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Abstract

New methodologies for diagnostic analysis and adaptive tuning based on sensitivity

information of the Multivariate Stochastic Volatility (MSV) model are established in

this dissertation. The main focus is on obtaining optimal conditional volatilities from

a time series set of financial data observed in the market by specifying a State-Space

model with error covariance adaptive tuning of the MSV model. Variational Data

Assimilation methods are used in this research as tools for obtaining the optimal a

posteriori estimates of the multivariate series of volatilities. Calculus of Variations

techniques are then applied to a forecast score function to derive the sensitivities of the

forecasted volatilities in terms of the input parameters. In summary, this dissertation

achieves the development of these new methodologies by

1. Developing the sensitivity information of the multivariate conditional volatilities

to observations, covariance specifications and prior estimates,

2. Developing tools for assessing multivariate volatility forecasts. For each time

period, sensitivity information provides forecasted volatility diagnostics of the

MSV model to give guidance on model performance, and

3. Developing an adaptive tuning procedure based on the multivariate volatility

sensitivity information to update the observation error covariance matrix during

each assimilation with the main objective of providing improved results in an

online manner.
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Applications of the new sensitivity diagnostics and adaptive tuning procedures of

the MSV model are explored in two experiments. The first experiment is a proof-of-

concept experiment where a multivariate series of volatilities is simulated through the

specification of a MSV model and serves as a placeholder for true volatilities. The

MSV model is then estimated on the resulting time series dataset and the adaptive

tuning procedure is performed to demonstrate superior estimation results over the

current literature methodologies. In the second experiment, a time series set of For-

eign Exchange (FX) rate data is used to estimate the MSV model to provide a time

series of conditional volatility estimates of each FX rate. The sensitivity information

of each FX rate’s conditional volatility forecasts is implemented to derive model per-

formance diagnostics, while the adaptive tuning procedure is implemented to provide

improved conditional volatility estimates. Furthermore, an objective assessment and

validation of the newly developed methodology is achieved by using an extended data

set that is independent on the training set used to calibrate the model.
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Chapter 1

Introduction

This dissertation establishes new methodologies for diagnostic analysis and adap-

tive tuning based on sensitivity information of the Multivariate Stochastic Volatility

(MSV) model. The main focus is on obtaining optimal conditional volatilities from

a time series set of financial data observed in the market by specifying a State-Space

model with error covariance adaptive tuning of the MSV model. The following out-

lines how this dissertation accomplishes its main focus.

Chapter 2 presents an overview of a number of variational data assimilation meth-

ods that are used in this research as tools for obtaining the optimal a posteriori es-

timates of the multivariate series of volatilities. The Chapter begins with the funda-

mental formulation of discrete stochastic differential equations as State-Space models

and presents their corresponding probabilistic properties to understand the estima-

tion process that leads to the main framework that is utilized by the data assimilation

methods. The Kalman filter method, based on the works of Rudolf Kalman [36], is

the first data assimilation method that is reviewed in the Chapter along with a dis-

cussion of their fundamental properties. The Kalman smoother algorithm is also

presented based on a fixed interval smoothing algorithm and it provides a variant of

the Kalman filter as it incorporates all data during a data assimilation window, as

opposed to a single iteration as presented in the Kalman filter. These algorithms are

well suited when the observation and state equations in the State-Space models are

1
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linear; that is, these algorithms provide optimal results. For the nonlinear case, an

extended Kalman filter algorithm is presented as means of overcoming the nonlin-

earity, however, the estimates are now sub-optimal estimates. The 4D-Var and the

weak 4D-Var algorithms are presented as an extension to the extended Kalman filter

for the nonlinear case and their probabilistic properties, along with their relationship

to the extended Kalman filter and smoother, are also presented in the Chapter. An

overview of the Particle filter algorithm that is based on a Markov chain Monte Carlo

(MCMC) alternative to the direct optimization scheme is presented at the end of the

Chapter.

Chapter 3 introduces the concept of stochastic volatility as it is understood by the

financial mathematics and financial econometrics literature. The Chapter begins with

an overview of the fundamental option pricing theory based on the work of Black and

Scholes [10] and provides an alternative pricing formulae when the simplistic assump-

tions of having constant variance (volatility) of the underlying asset is extended from

the Black-Scholes assumptions. The univariate Stochastic Volatility (SV) model con-

sidered for estimation in this dissertation is presented from a continuous-time process

and their direct discrete multivariate extensions is formulated. From the multivariate

extensions of the SV model, two MSV models are considered: an MSV model with

no-leverage effects (the time series and volatilities are not correlated) and an MSV

model with leverage effects. For this dissertation, the MSV model with no-leverage

effects is selected for modeling multivariate stochastic volatilities.

Chapter 4 presents the Calculus of Variations techniques that are applied to de-

rive the sensitivities of the forecasted volatilities in terms of the input parameters.

The Chapter begins by deriving the sensitivity information of a variational data as-

similation system to the various input parameters. Then, the sensitivity information

is extended to derive the sensitivities of a forecast score function of the multivari-

2
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ate conditional volatilities with respect to observations, covariance specifications and

prior estimates. The sensitivity information provides the necessary tools for assessing

the multivariate volatility forecasts from the model. For each time period, sensitiv-

ity information provides forecasted volatility diagnostics of the MSV model to give

guidance on model performance and guidance on adaptive tuning. A new adaptive

tuning procedure is derived on the multivariate volatility sensitivity information to

update the observation error covariance matrix during each assimilation with the

main objective of providing improved results in an online manner.

Chapter 5 presents the applications of the newly developed sensitivity diagnostics

and adaptive tuning procedures of the MSV model in two experiments. The first

experiment is a proof-of-concept experiment where a multivariate series of volatilities

is simulated through the specification of a MSV model and serves as a placeholder

for true volatilities. The MSV model is then estimated on the resulting time series

dataset and the adaptive tuning procedure is performed to demonstrate superior esti-

mation results over the current literature methodologies. In the second experiment, a

time series set of Foreign Exchange (FX) rate data is used to estimate the MSV model

to provide a time series of conditional volatilities of each FX rate. The sensitivity

information of each FX rate’s conditional volatility forecasts is employed to derive

model performance diagnostics, while the adaptive tuning procedure is implemented

to provide improved conditional volatility estimates. Furthermore, an objective as-

sessment and validation of the newly developed methodology is achieved by using an

extended data set that is independent on the training set used to calibrate the model.

Chapter 6 presents the conclusions observed during the development and appli-

cation of the sensitivity analysis and adaptive tuning of the MSV model. Future

research directions are also discussed in this Chapter to extend these methodologies

to more advance data assimilation methods and complex industry problems.

3
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Chapter 2

Overview of Data Assimilation Methods

Data assimilation methods are concerned with the estimation of the state of a physical

process described by stochastic dynamical systems. The general modeling approach

involves the assumption of two equations, where one equation describes the dynamics

of the true state and the other equation describes the dynamics of the observations

given the states. The estimation approach attempts to recover the true state from

a set of noisy observations taken on the state variable. Data assimilation methods

attempt to provide an optimal estimate (analysis) of the evolving state of the system

by incorporating all available sources of information: observational data, an a priori

estimate - typically produced by a model forecast, and the associated error statistics.

The following sections of this chapter provide an overview of well-established data

assimilation methods and their fundamental properties.

2.1 General State-Space Model

The main references for the derivation presented in this section are [34], [36] and [37].

Consider the discrete stochastic difference equation for the state x

xk+1 =Mk+1(xk) + Γk(xk)wk+1, k = 0, 1, 2, ... (2.1)

4
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where xk ∈ Rn is the state at time tk, Mk+1(∗) is an n−vector valued function

(linear or nonlinear) that transitions the state xk to xk+1, Γk is an n × r matrix

function called the state-disturbance-loading matrix describing how the states x at

period tk combine with the state errors at period tk and wk ∈ Rr is a sequence

of white Gaussian vectors with wk ∼ N(000,Qk), for each k that describe the state

errors at time tk. The distribution of the initial condition x0 is assumed to be known

and furthermore, statistically independent of the process {wk}k≥1. Given xk, the

state xk+1 depend only on wk+1, which is independent of xk−1, ...,x0. Therefore, the

solution {xk}k≥0 to (2.1) is a Markov process.

Let yk ∈ Rm represent (denote) discrete, noisy observations taken on the state xk

at time tk and suppose that the model for the observations is given by

yk = h(xk) + vk, k = 1, 2, ... (2.2)

where hk() is an m−vector valued (observation operator) function describing how

the observations relate to the states at time tk and {vk}k≥1 is a vector sequence of

Gaussian white noise, with vk ∼ N(000,Rk) for each k. For simplicity, it is assumed that

{vk}k≥1 and {wk}k≥1 are statistically independent, such that, there is no correlation

amongst these two stochastic processes.

Now, consider having a set of realizations of the noisy observations yk. That is,

consider having the information set Fl = {y1, ...,yl} given by measurements of the

system. The problem of computing the estimates xk given the information set Fl, can

be classified as follows:

1. The problem is called a discrete smoothing problem, if k < l, for each k.

2. The problem is called a discrete filtering problem, if k = l, and

5
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3. The problem is called a discrete prediction problem, if k > l.

2.2 Probabilistic Approach

In this section, the posterior probability distribution is derived for the discrete prob-

lem (2.1) - (2.2) which will subsequently be a key ingredient to the optimal state

estimation theory. Consider again the problem (2.1) - (2.2) and the information set

FN = {y1, ...,yN}. The solution of the estimation problem is a sequence {x̂0, ..., x̂N}

that maximizes the conditional probability density function p(x0, ...,xN |y1, ...,yN).

Using Bayes’ rule for conditional densities

p(x0, ...,xN |y1, ...,yN) =
p(y1, ...,yN |x0, ...,xN)p(x0, ...,xN)

p(y1, ...,yN)
(2.3)

Recall that, by assumption, wk ∼ N(000,Qk), vk ∼ N(000,Rk), where Qk,Rk > 0

and {wk}k≥1 is statistically independent and {vk}k≥1 is also statistically independent.

Therefore, the probability distribution of the observations given the states is given

by

p(y1, ...,yN |x0, ...,xN) =
N∏
k=1

pvk
(yk − hk(xk)) (2.4)

Where pvk
(∗) is the normal probability distribution of vk. Next, by the product law

of probability and the Markov property of the state equation,

p(x0, ...,xN) = p(xn|x1, ...,xN−1) · p(xN−1|x1, ...,xN−2) · ... · p(x2|x0,x1) · p(x1|x0)p(x0)

= p(x0)
N∏
k=1

pΓk(xk)wk
(wk −Mk(xk−1)) (2.5)

Where pΓk(xk)wk
(∗) is the normal probability distribution of wk scaled by the matrix

Γk(xk). Equality in equation (2.5) was obtained through the assumption that the

6
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states are independent (see equation (5.28) in Jazwinski [34]) Since the probability

distributions are normal, as well as the initial condition is also assumed to be normally

distributed with x0 ∼ N(000,P0), equation (2.3) becomes (up to the normalization

constant)

p(x0, ...,xN |FN) = c exp
{
− 1

2
(x0 − x̂0)P−1

0 (x0 − x̂0)T

− 1

2

N∑
k=1

(yk − hk(xk)R
−1
k (yk − hk(xk))

T

− 1

2

N∑
k=1

(xk −Mk(xk−1))(ΓkQkΓ
T
k )−1(xk −Mk(xk−1))T

}
(2.6)

Taking the negative log of (2.6) such that the problem becomes one of minimizing

the loglikelihood (Bayesian) function, the functional to minimize is given by

min
{x0,...,x}

JN =
1

2
(x0 − x̂0)P−1

0 (x0 − x̂0)T

1

2

N∑
k=1

(yk − hk(xk)R
−1
k (yk − hk(xk))

T

1

2

N∑
k=1

(xk −Mk(xk−1))(ΓkQkΓ
T
k )−1(xk −Mk(xk−1))T

}
(2.7)

Equation (2.7) has a close relationship to the weak 4D-Var problem, as it will be

shown in later sections. Variants of (2.7) also give rise to different data assimilation

problems, such as the Kalman filter and the 4D-Var.

2.3 The Kalman Filter

Mathematician Rudolf Kalman [36] solved the estimation problem of State-Space

models when the equations are linear. The celebrated solution is called the Kalman

filter. In this section, the case where the equations are linear are considered to show

7
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how the Kalman filter solution solves a maximum posterior probability problem.

Consider the linear State-Space model

xk+1 = Mk+1xk + Γkwk+1, k = 0, 1, ... (2.8)

where xk ∈ Rn is the state at time tk, Mk ∈ Rn×n is a nonsingular state transition

matrix, Γk ∈ Rn×r and {wk}k≥1 is an r-dimensional vector sequence of white Gaussian

noises with wk ∼ N(000,Qk) and Qk > 0. The discrete, linear observations are given

by

yk = Hkxk + vk, k = 1, 2... (2.9)

where Hk ∈ Rm×n is nonrandom matrix that relates the states to the observations

and {vk}k≥1 is an m-dimensional vector sequence of white Gaussian noises, with

vk ∼ N(000,Rk) and Rk > 0. Furthermore, the distribution of the initial condition x0,

at initial time t0, is Gaussian with x0 ∼ N(x̂0,P0) and x0, {vk}k≥1, {wk}k≥1 are all

assumed to be statistically independent.

Direct computations from equations (2.8)-(2.9) give the conditional mean and

conditional variance. From equation (2.8), given the information set Fk = {y1, ...,yk},

the conditional mean becomes

x̂k+1|k = E{xk+1|Fk} = Mk+1x̂k|k,

where the notation x̂l|k = E{xl|Fk} is adopted to denote the conditional expectation

of xl given the information set Fk. From equation (2.8), the conditional variance

may also be derived by subtracting the mean, taking the square and computing the

8
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expectation

Pk+1|k = E{(xk+1 − x̂k+1|k)(xk+1 − x̂k+1|k)
T |Fk}

= E{[Mk+1(xk − x̂k|k) + Γk+1wk+1][Mk+1(xk − x̂k|k) + Γk+1wk+1]T |Fk}

= Mk+1Pk|kM
T
k+1 + Γk+1Qk+1ΓTk+1

The discrete linear State-Space model is summarized in the following theorem [34]

and it is the much celebrated Kalman filter.

Theorem 2.3.1. The optimal (minimum variance) filter for the discrete linear State-

Space model of equations (2.8)-(2.9) consists of the following difference equations of

the conditional mean and conditional variance. Between observations,

x̂k+1|k = Mk+1x̂k|k, (2.10)

Pk+1|k = Mk+1Pk|kM
T
k+1 + ΓkQk+1ΓTk . (2.11)

At observations,

x̂k|k = x̂k|k−1 + Kk(yk −Hkxk|k−1), (2.12)

Pk|k = Pk|k−1 −KkHkPk|k−1 (2.13)

where

Kk = Pk|k−1H
T
k [HkPk|k−1H

T
k + Rk]

−1 (2.14)

is the Kalman Gain. Prediction for tl > tk (x̂l|k,Pl|k) is accomplished via equation

(2.8) with initial condition (x̂k|k,Pk|k).

In his original publication, Kalman derived the Kalman filter by making use of

orthogonal projections. There are many other ways of deriving the Kalman filter,

9
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see for example [23] where multivariate normal distribution relationships are used to

derive the filter.

In order to give the presentation of the Kalman filter as a minimization problem, it

may be considered as a maximization problem of a one loop iteration of the posterior

conditional distribution

p(xk|Fk) (2.15)

It is noted that many have used maximum likelihood estimation to derive the Kalman

filter including Ho [30], Schmidt [48] and Jazwinski [34]. The basic ideas shall be

presented while preserving a probabilistic perspective. At each observation xk, the

posterior distribution is given by

p(xk|Fk) =
p(yk|xk)p(xk|Fk−1)

p(yk|Fk−1)
(2.16)

Where the corresponding distributions are given by

yk|xk ∼ N(Hkxk,Rk) (2.17)

xk|Fk−1 ∼ N(x̂k|k−1,Pk|k−1) (2.18)

yk|Fk−1 ∼ N(Hkx̂k|k−1,HkPk|k−1H
T
k + Rk︸ ︷︷ ︸

Vk|k−1

) (2.19)

Notice that because all of the distributions are normal, it is straight forward to obtain

their corresponding distributions as they are characterized by their first and second

moments, which it has been done above.

Using these equations we obtain (up to a constant) the following posterior distri-

bution

10
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p(xk|Fk) = c′ exp
{
− 1

2
(yk −Hkxk)

TR−1
k (yk −Hkxk)

−1

2
(xk − x̂k|k−1)T (Pk|k−1)−1(xk − x̂k|k−1)

+
1

2
(yk −Hkx̂k|k−1)T (Vk|k−1)−1(yk −Hkx̂k|k−1)

}

Maximization of the posterior distribution is the same as minimization (with respect

to xk) of the following cost functional

J =
1

2
(yk −Hkxk)

TR−1
k (yk −Hkxk) +

1

2
(xk − x̂k|k−1)T (Pk|k−1)−1(xk − x̂k|k−1)

(2.20)

Setting the gradient of J with respect to xk equal to zero gives

−HT
kR−1

k (yk −Hkxk) + (Pk|k−1)−1(xk − x̂k|k−1) = 000

The solution to the optimality condition is denoted by x̂k|k and it is the same as

equation (2.12). Once the optimal state has been obtained, direct computation of

Pk|k = E{(xk − x̂k|k)(xk − x̂k|k)
T |Fk} gives equation (2.13). It has been shown that

the Kalman filter is a solution to a maximum posterior probability problem and from

equation (2.20), it can be seen that when the errors are normally distributed, the

Kalman filter is indeed the solution to an optimization problem. Notice that this

variational cost functional resembles that of equation (2.7) where the functional here

assumes no model errors (wk = 000) and only one iteration is taken into account during

the optimization process.

11
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2.4 The Kalman Smoother

The Kalman smoother is a variation of the Kalman filter. While the Kalman filter in

equations (2.12)-(2.13) uses an update equation and a one step ahead forecast as the

information becomes available, the Kalman smoother uses all possible information

already available and attempts to recover the state variables based on the batch of

information given. More specifically, the Kalman filter uses equation (2.12)-(2.13) to

filter through the state x̂k|k as the information set Fk becomes available for each k, and

then uses the model equations to get the one step ahead forecast x̂k+1|k of the state

variable. It iteratively does this for k = 1, ..., N , where tN is the final forecast horizon.

The Kalman smoother, on the other hand, uses all of the available information in the

information set FN , to recover the states x̂k|N , for k = N,N − 1, ..., 1.

Following Tsay [53], the smoothed state variables are defined as

x̂k|N = E{xk|FN} = E{xk|y1, ...,yN} (2.21)

and they are given by

x̂k|N = x̂k|k−1 + Pk|k−1qk−1 (2.22)

Where qk is defined as

qN = 000

qN−1 = HT
NV−1

N rN

qN−2 = HT
N−1V

−1
N−1rN−1 + LT

N−1H
T
NV−1

N rN

...

qk−1 =
N∑
s=k

(
s−1∏
j=k

LT
j

)
HT
s V−1

s rs, for k = N − 2, N − 3, ..., 1

12
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Where rk = yk −Hkx̂k|k−1, Vk = HkPk|k−1H
T
k + Rk and Lk = Mk −KkHk.

The Kalman smoother algorithm therefore proceeds as follows. Compute the

Kalman filter estimates x̂k|k using equations (2.12)-(2.13) for each tk ∈ [t1, tN ] dur-

ing the data assimilation window. Then, compute the Kalman smoother using the

backwards recursion

qk−1 = HT
kV−1

k rk + LT
k qk (2.23)

x̂k|N = x̂k|k−1 + Pk|k−1qk−1 (2.24)

for k = N,N − 1, ..., 1 where qN = 000. It is noted that in the data assimilation

literature, this algorithm is referred to as the fixed interval smoothing (see for example

de Jong [21]).

For completeness, the state covariance matrix under the Kalman smoother algo-

rithm is also presented. The smoothed covariance is denoted as

Pk|N = E{(xk − x̂k|N)(xk − x̂k|N)T|FN} (2.25)

and the smoothed state covariance can be calculated as follow:

Zk−1 = HT
kV−1

k Hk + LT
kZkLk (2.26)

Pk|N = Pk|k−1 −Pk|k−1Zk−1Pk|k−1 (2.27)

for k = N,N − 1, ..., 1 with ZN = 000. As with the state smoothing algorithm, one

first obtains a forward pass of the state covariances using the Kalman filter equations

then uses equations (2.26)-(2.27) to obtain a backward pass of the smoothed state

covariances.

13
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2.5 The Extended Kalman Filter

The goal of the Extended Kalman filter is to overcome the problems of nonlinearity in

the equations by replacing the nonlinear functions in the state and observation equa-

tions by its corresponding linearization. The books of Jazwinski [34] and Anderson

[3] provide a complete derivation of the Extended Kalman filter.

Consider the nonlinear State-Space model

xk+1 = Mk+1(xk) + Γk(xk)wk+1, k = 0, 1, ... (2.28)

yk = hk(xk) + vk, k = 1, 2, ... (2.29)

where M(∗), Γ(∗) and h(∗) are now nonlinear functions. The idea of the Extended

Kalman filter is to replace these nonlinear functions with their corresponding linear

approximations and proceed as in the linear case to use the Kalman filter. Proceeding

formally, the linear approximations about the conditional mean x̂k|k and x̂k|k−1 are

Mk+1(xk) ≈ Mk+1(x̂k|k) + Mk+1(xk − x̂k|k)

hk(xk) ≈ hk(x̂k|k−1) + Hk(xk − x̂k|k−1)

were Mk+1 and Hk are the Jacobian matrix of first order derivatives of Mk+1(∗)

and hk(∗) of the model and observation operator, respectively. That is, the Jacobian

matrices are calculated as

Mk+1 =
∂Mk+1

∂x

∣∣∣
x̂k|k

(2.30)

Hk =
∂Hk

∂x

∣∣∣
x̂k|k−1

(2.31)

(2.32)

14
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Substituting these in, the nonlinear model becomes

xk+1 = Mk+1xk + Γkwk+1 + uk, k = 0, 1, ... (2.33)

yk = Hkxk + vk + zk, k = 1, 2, ... (2.34)

where Γk = Γk(x̂k|k), uk = Mk+1(x̂k|k) −Mk+1x̂k|k and zk = hk(x̂k|k−1) −Hkx̂k|k−1

are calculated online. Thus, the nonlinear models were transformed to a linear model

and the Kalman filter algorithm may be implemented to solve for the conditional

mean and covariance matrix.

2.6 4D-Var

Consider the nonlinear State-Space model

xk+1 = Mk+1(xk) k = 0, 1, ... (2.35)

yk = hk(xk) + vk, k = 1, 2... (2.36)

where xk ∈ Rn and yk ∈ Rm are the state and observation at time tk ∈ [t0, tN ] and

Mk+1(∗) and hk(∗) are nonlinear functions. It is assumed that the state equation

has no errors and that the observation errors are a vector white noise sequence with

vk ∼ N(0,Rk). It is also assumed that the initial condition is normally distributed

with x0 ∼ N(x̂b0,B), where B ∈ Rn×n is called the background covariance matrix and

x̂b0 is the state background estimate.

It was shown in Section 2.2 that the solution of the estimates xk may be obtained

via maximum likelihood (Bayesian) estimation. Using the model equations (2.35) as
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constraints, the analysis is obtained by the minimization of

J(x0) =
1

2
(x0 − x̂b0)TB−1(x0 − x̂b0) +

1

2

N∑
k=0

(yk − hk(xk))
TR−1

k (yk − hk(xk)) (2.37)

The solution to this minimization problem is denoted by xa0 and is called the

analysis of x0. The remaining analysis estimates xak can be obtained via equation

(2.35) by evaluating the model since the model is ”perfect”. Minimization of the

cost functional (2.37) amounts to the minimization of the fit of the observation data

and the prior estimate x̂b0. The method of obtaining the best estimates through a

minimization problem is called variational method and the minimization of the

cost functional (2.37) is called four dimensional variational data assimilation

(4D-Var).

2.7 Weak 4D-Var

Consider the same nonlinear State-Space model described in the 4D-Var problem but

now, it is assumed that the model is not perfect and hence, there exists state modeling

errors,

xk+1 = Mk+1(xk) + wk+1 k = 0, 1, ... (2.38)

yk = hk(xk) + vk, k = 1, 2, ... (2.39)

where the errors {wk}k≥1 is an n-vector sequence of Gaussian white noise with wk ∼

N(000,Qk). Taking once again the probabilistic approach outlined in Section 2.2, the
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minimization problem now becomes

J(x0, ...,xN) =
1

2
(x0 − x̂b0)TB−1(x0 − x̂b0) +

1

2

N∑
k=1

(yk − hk(xk))
TR−1

k (yk − hk(xk))

+
1

2

N∑
k=1

(xk −Mk(xk−1))TQ−1
k (xk −Mk(xk−1)) (2.40)

Notice that since the model (2.38) is no longer perfect, minimization with respect to

xb0 and using the model equation (2.38) to obtain the remaining estimates is no longer

valid. If one proceeds this way, each new iteration will carry out an error from the

previous iteration and soon enough errors add up. Therefore, it is necessary that the

minimization of J be done with respect to the state sequence {x0, ...,xN}.

The solution to the minimization problem (2.40) gives the analysis of the states

{xa0, ...,xaN}. Prediction to the next step tN+1 is done via equation (2.38) with wN+1 =

0. That is, the best prediction occurs when there are no model errors. Finally, the

method of minimizing the cost functional J(x0, ...,xN) is called the weak 4D-Var,

since the model equations xk+1 =Mk+1(xk) + wk+1 are now imposed ”weakly” into

the cost functional.

2.8 Properties of Variational Data Assimilation Methods

In the publication of Li and Navon [39], they showed the properties of the varia-

tional data assimilation methods as well as its relationship to the Kalman filter and

smoother. In this section, we will provide a brief overview to the solutions of the

4D-Var and weak 4D-Var and how the 4D-Var is intimately related to the Kalman

solution. For more information, we direct the reader to the paper of Li and Navon.
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To this end, consider again the linear State-Space model

xk+1 = Mk+1xk + Γkwk+1, k = 0, 1, 2, ... (2.41)

yk = Hkxk + vk, k = 1, 2, ... (2.42)

where xk is an n−vector of states, Mk+1 is the n×n transition matrix that transitions

the states from tk to tk+1, Γk is an n× r matrix and {wk}k≥1, {vk}k≥1 are r- vector

and m- vector, respectively, white sequences such that

wk ∼ N(000,Qk),

vk ∼ N(000,Rk)

where Qk > 0, Rk > 0 are the covariance matrices, respectively. It is also assumed

that the initial condition has distribution

x0 ∼ N(xb0,B0)

where xb0 is the background state estimate and B0 is the background error covari-

ance matrix at time t0. We also assume that {wk}k≥1 and {vk}k≥1 are statistically

independent and that {wk}k≥1 is independent of x0.

Assume first a perfect model, i.e., there are no model errors (wk = 000). As shown

before, the cost function in a 4D Variational data assimilation set up during the

assimilation window [t0, tN ] is given by

J =
1

2
(x0 − xb0)TB−1

0 (x0 − xb0) +
1

2

N∑
k=1

(Hkxk − yk)
TR−1

k (Hkxk − yk) (2.43)

In the standard 4D-Var analysis, the minimization of the cost function is done with

18
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respect to x0. As such, one instead has

J(x0) =
1

2
(x0−xb0)TB−1

0 (x0−xb0)+
1

2

N∑
k=1

(HkM(k, 0)x0−yk)
TR−1

k (HkM(k, 0)x0−yk)

(2.44)

where M(k, i) = M(k, k − 1)...M(i+ 1, i) is obtained since

xk+1 = M(k + 1, k)xk

= M(k + 1, k)M(k, k − 1)xk−1

...

= M(k + 1, k)M(k, k − 1)...M(1, 0)︸ ︷︷ ︸
M(k,0)

x0

and where the notation Mk+1 = M(k + 1, k) is implemented to denote the state

transition matrix that transitions the state from tk to tk+1. Lorenc [40] and Thepaut

and Courtier [52] presented the analytical solution to equation (2.44). It is important

to emphasize that the analysis covariance matrix is given by the inverse of the Hessian,

H, of the cost function (see Rabier and Courtier [47]).

Pa
0 = E{(xa0 − xt0)(xa0 − xt0)T} = H−1

0,N (2.45)

The solution to the optimization problem (4D-Var) is denoted by x̂0 and it satisfies

the optimality condition of equation (2.44) ∇J(x̂0) = 000. This solution is expressed as

x̂0 = xb0 −H−1
0,N∇x0J(xb0) (2.46)

where H0,N is the Hessian of the cost function (2.44) evaluated at x0 and it is given
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by

H0,N = B−1
0 +

N∑
k=1

MT (k, 0)HT
kR−1

k HkM(k, 0) (2.47)

and where ∇x0J(xb0) is the gradient of the of cost function (2.44) evaluated at xb0 and

it is given by

∇x0J(xb0) =
N∑
k=1

MT (k, 0)HT
kR−1

k (ybk − yk) (2.48)

Here ybk is defined as

ybk = Hkx
b
k = HkM(k, 0)xb0 (2.49)

Furthermore, it is useful to use the Sherman-Morrison-Woodbury formula found in

Jazwinski [34] (see [39]) to obtain the solution in equation (2.46) in terms of the

Kalman Gain matrix. This solution, in terms of the Kalman Gain, is the analytical

solution found in Lorenc [40] and Thepaut and Courtier [52] and it presents a similar

format to the Kalman filter solution.

For a model with model errors (weak 4D-Var), the minimization is done on the

cost function

J =
1

2
(x0−xb0)TB−1

0 (x0−xb0)+
1

2

N∑
k=1

(Hkxk−yk)
TR−1

k (Hkxk−yk)+
1

2

N∑
k=1

wT
k Q−1

k wk

(2.50)

There are three ways in which one could solve the minimization problem (2.50):

1. Carrying out the minimization with respect to the sequence (x0, ...,xN ,w1, ...,wN).

This approach is usually done for theoretical purposes and it has been exclu-

sively used to prove the equivalence between Kalman smoothers and 4D-Var

(see Bryson and Ho [13]; Bennett and Budgell [8]; Menard and Daley [42]; Zhu

et al. [56])
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2. Carrying out an unconstrained optimizing by explicitly inputing the values of wi

in the cost function and minimizing with respect to the sequence (x0, ...,xN).

In which case, the new minimization is done on the functional described in

the weak 4D-Var and the solution can be interpreted as the optimal trajectory

solution, rather than the optimal initial condition found in the 4D-Var problem.

3. Carrying out the minimization with respect to (x0,w1, ...,wN) on the functional

(see Zupanski [58] for more details)

J =
1

2
(x0 − xb0)TB−1

0 (x0 − xb0)

+
1

2

N∑
k=1

(
Hk

(
M(k, 0)x0 +

k∑
j=1

M(k, j)Γ(j − 1)wj

)
− yk

)T

× R−1
k

(
Hk

(
M(k, 0)x0 +

k∑
j=1

M(k, j)Γ(j − 1)wj

)
− yk

)

+
1

2

N∑
k=1

wkQ
−1
k wk (2.51)

Note the solution to the difference equation (2.41) is

xk = M(k, 0)x0 +
k∑
j=1

M(k, j)Γ(j − 1)wj (2.52)

In order to provide an optimal solution of {x0,w1, ...,wN} to equation (2.51), an

augmented vector Z = (xT0 ,w
T
1 , ...,w

T
N) is created. Then, equation (2.51) can be

transformed to

J =
1

2
(Z0 − Zb

0)TB−1
Z0

(Z− Zb
0) +

1

2

N∑
k=1

(HkCkZ0 − yk)
TR−1

k (HkCkZ0 − yk) (2.53)

where Z0 = ((xb0)T ,000, ...,000), BZ0 is a (1 +N)× (1 +N) block diagonal matrix whose
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block diagonals are B0,Q1, ...,QN and

Ck = {M(k, 0),M(k, 1)Γ(0), ...,M(k, k)Γ(k − 1), 0, ..., 0} (2.54)

are n× (n+ rN) matrices.

It is noted that for the case of a perfect model, equation (2.53) reduces to equation

(2.44). The optimal solution is therefore

Ẑ0 = Zb
0 + H−1

Z0
∇Z0J(Zb

0) (2.55)

where the Hessian matrix is given by

HZ0 = B−1
Z0

+
N∑
k=1

CT
kHT

kR−1
k HkCk (2.56)

and the gradient of J evaluated at Zb
0 is given by

∇Z0J(Zb
0) =

N∑
k=1

CT
kHT

kR−1
k (HkCkZ

b
0 − yk)

=
N∑
k=1

CT
kHT

kR−1
k (HkM(k, 0)xb0 − yk) (2.57)

Finally, it is noted that the calculation of the error covariance matrix of Ẑ0 is given

as the inverse of the Hessian matrix

Pa
Z0

= H−1
Z0

(2.58)

It was shown that the 4D-Var and the weak 4D-Var methods can have solutions

in terms of an analytic expression. The reader is referred to Courtier et al. [15] for an

incremental algorithm that is useful for obtaining numerical solutions of the 4D-Var
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problem when the model and observation equations are nonlinear. It is noted that

following the steps in the section, one could also implement the incremental algorithm

of Courtier et al. to obtain a numerical (approximate) solution of the nonlinear weak

4D-Var.

2.8.1 Optimality of Variational Data Assimilation Methods

For a perfect model, the joint posterior conditional probability density is (see Lorenc

[40])

p(x0, ...,xN |y1, ...,yN) = c exp

{
− 1

2
(x0 − xb0)TB−1

0 (x0 − xb0)

− 1

2

N∑
k=1

(Hkxk − yk)
TR−1

k (Hkxk − yk)

}
(2.59)

Thus, the maximization of the posterior distribution p(x0, ...,xl|y1, ...,yl) with respect

to (x0, ...,xl) is equivalent to the minimization of the cost functional (2.43). There-

fore, the solution to the 4D-Var can be interpreted as the joint maximum likelihood

(Bayesian) estimate.

If instead, it is only of concern to find the optimal estimate xk(0 ≤ k ≤ N) for a

fixed k only, yet still consider the full information set YN = {y1, ...,yN}, the marginal

posterior density becomes

p(xk|y1, ...,yl) (2.60)

Since the model is perfect, xk = M(k, 0)x0 and by Theorem 2.7 found in Jazwinski

(see [34])

‖M(k, 0)‖p(x0|Yl) = p(xk|Yl)

where ‖M(k, 0)‖ is the absolute value of the determinant of the matrix M(k, 0) and

23



www.manaraa.com

where

p(x0|YN) = c exp

{
− 1

2
(x0 − xb0)TB−1

0 (x0 − xb0)

− 1

2

N∑
k=1

(HkM(k, 0)x0 − yk)
TR−1

k (HkM(k, 0)x0 − yk)

}
(2.61)

Therefore, maximization of p(xk|YN) with respect to xk is equivalent to maximization

of p(x0|YN) with respect to x0. On the other hand, maximization of p(x0|YN) with

respect to x0 is equivalent to minimization of (2.44) with respect to x0. Due to the

consistency property of the 4D-Var, it can be further seen that maximizing p(x0|YN)

with respect to x0 is equivalent to maximizing p(x0, ...,xN |YN) with respect to the

state sequence {x0, ...,xN}.

For a model with errors, the posterior probability density of p(x0,w1, ...,wN |YN)

is given by (see Li [39])

p(x0,w1, ...,wN |YN) = c exp
{
− 1

2
(x0 − xb0)TB−1

0 (x0 − xb0)

− 1

2

N∑
k=1

(
Hk

(
M(k, 0)x0 +

k∑
j=1

M(k, j)Γ(j − 1)wj

)
− yk

)T

× R−1
k

(
Hk

(
M(k, 0)x0 +

k∑
j=1

M(k, j)Γ(j − 1)wj

)
− yk

)

− 1

2

N∑
k=1

wkQ
−1
k wk

}
(2.62)

Therefore, maximizing p(x0,w1, ...,wN |YN) with respect to {x0,w1, ...,wN} is equiv-

alent to minimizing the functional (2.51) found in ”step 3”. One could also show

that maximizing p(xk,w1, ...,wN |YN) with respect to {xk,w1, ...,wN} for any 0 ≤

k ≤ N is equivalent to maximizing p(x0,w1, ...,wN |YN) with respect to the sequence

{x0,w1, ...,wN}. Therefore, the 4D-Var solution is optimal with respect to the model
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trajectory {x0, ...,xN} and with respect to a single state xk, even though the model

contains errors.

2.8.2 Relationship Between the 4D-Var and the Kalman Filter

It has been long known that for a perfect model with linear observation and model

equations, the 4D-Var solution and the Kalman filter yield the same values at the end

of the assimilation window (see Kalman [36]). It was shown in the previous sections

that the solution of the 4D-Var is the maximum (Bayesian) likelihood solution and

that this solution is identical to that of the Kalman filter at the end of the time

window for both, perfect and imperfect models.

This equivalence can also be verified by directly comparing the 4D-Var and Kalman

filter solutions. For one iteration of the Kalman filter, we have at the (k − 1) step

that

xk−1 ∼ N(x̂k−1,P
a
k−1) (2.63)

and the Kalman filter can be used to obtain the estimate x̂k given new data. If the

set up of the cost function is given as

Jk =
1

2
(xk−1−x̂k−1)TB−1

k−1(xk−1−x̂k−1)+
1

2
(yk−Hkxk)

TR−1
k (yk−Hkxk)+

1

2
wT
k Qkwk

(2.64)

with the optimal solution denoted as x̂k, it will be identical to that of the Kalman

filter (see Bryson and Ho [13]).

2.9 Particle Filters

Particle filters are Sequential Monte Carlo algorithms that attempt to construct the

posterior distribution p(x0, ...,xN |y1, ...,yN) by taking many samples (called parti-
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cles) that approximate the true posterior. This approach allows for the relaxation of

the linear and Gaussian assumption in the State-Space model. Arulampalam et al. [5]

provide a tutorial on particle filters for online nonlinear and non-Gaussian Bayesian

tracking. This section will provides an outline of the Particle filter algorithm and its

application to nonlinear State-Space problems. Further details and recent advances

in the theory and practical implementation may be found in references [4] and [22].

The problem at hand is extended to allow for nonlinearity and non-Gaussian noise.

That is, it is assumed the State-Space model to be

yk = hk(xk,vk) (2.65)

xk+1 = Mk(xk,wk) (2.66)

where the model and observation operators are allowed to be nonlinear functions

of the states and the corresponding noises are allowed to have non-Gaussian dis-

tributions. To demonstrate the general algorithm, let {xi0, ...,xik, wik}Ns
i=1, denote a

random measure that characterizes the posterior probability density function (pdf)

p(x0, ...,xN |y1, ...,yN)where Ns is the number of samples (particles). Here, the se-

quence {xi0, ...,xik}Ns
i=1 is a set of support points and the sequence {wik}Ns

i=1 are the

associated normalized weights with
∑

iw
i
k = 1. Then, the posterior probability den-

sity can be approximated discretely by

p(x0, ...,xN |y1, ...,yN) ≈
Ns∑
i=1

wikδ((x0, ...,xN)− (xi0, ...,x
i
N)) (2.67)

Therefore, a discrete approximation to the true posterior distribution can be written

as p(x0, ...,xN |y1, ...,yN) in terms of weights and support points. Thus, Sequential

Monte Carlo algorithms that are based on particle filters vary in two ways. First way
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is to choose appropriate weights and the second way, is to choose appropriate support

points that have meaningful weights such that the approximation is as accurate as

possible. The weights can be chosen using the principle of importance sampling, see for

example [9] and [22]. This principle assumes that p(x) ∝ π(x) is a probability density

that is difficult to draw samples from but for which π(x) can be evaluated, as well as

p(x) up to a proportionality constant. Furthermore, if xi ∼ q(x) for i = 1, ..., Ns are

samples that are easily generated from a proposal density q(x), called the importance

density, then, the weights for the approximation

p(x) ≈
Ns∑
i=1

wiδ(x− xi) (2.68)

can be computed by

wi ∝ π(xi)

q(xi)
(2.69)

This same principle can be applied to the filtering approach. To see this, suppose the

samples {xi0, ...,xiN}Ns
i=1 are drawn from an importance density q(x0, ...,xN |y1, ...,yN),

then the weights in (2.67) can be computed by

wik ∝
p(xi0, ...,x

i
N |y1, ...,yN)

q(xi0, ...,x
i
N |y1, ...,yN)

(2.70)

Suppose now that the data is coming in sequentially (online) and that an approxima-

tion of p(x0, ...,xN−1|y1, ...,yN−1) has been calculated. The need is now to approxi-

mate p(x0, ...,xN |y1, ...,yN) with a new set of samples. If the importance density is

chosen such that it can be factorized as

q(x0, ...,xN |y1, ...,yN) = q(xN |x0, ...,xN−1,y1, ....yN)q(x0, ...,xN−1|y1, ...,yN−1)

(2.71)
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then, a set of samples xiN ∼ q(x0, ...,xN |y1, ...,yN) can be obtained by augmenting the

existing samples {xi0, ...,xiN−1}Ns
i=1 ∼ q(x0, ...,xN−1|y1, ...,yN−1) with the new state

xiN ∼ q(xN |x0, ...,xN−1,y1, ....yN). The weight update equation can be derived to

obtain an approximation of p(x0, ...,xN |y1, ...,yN). Furthermore, if the importance

density is such that

q(xN |x0, ...,xN−1,y1, ....,yN) = q(xN |xN−1,y1, ....yN) (2.72)

then the importance density is dependent only on xN−1,y1, ...,yN . This is of im-

portance in the case where only a filtered estimate is required at each time step

from p(xN |y1, ...,yN). This assumption is a standard assumption in the sampling

approach. Therefore, the approximation is given by

p(xN |y1, ...,yN) ≈
Ns∑
i=1

wikδ(xN − xiN) (2.73)

where the weights are defined as

wiN ∝ wiN−1

p(yN |xiN)p(xiN |xiN−1)

q(xik|xiN−1,yN)
(2.74)

Thus, the Sequential Importance Sampling algorithm consists of recursive propagation

of weights and support points as each measurement is given online. The corresponding

procedure for the SIS Particle filter is presented in Algorithm 2.1 and can be found

as Algorithm 1 in [5].
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Algorithm 2.1: SIS Particle Filter

Input: State sample {xik−1}
Ns
i=1, weights {wik−1}

Ns
i=1 and observation yk

Output: Updated states sample and weights {xik, wik}
Ns
i=1

1: procedure SIS-Particle Filters({xik−1, w
i
k−1}

Ns
i=1,yk)

2: for i = 1,2,...,Ns do

3: Draw xik ∼ q(xk|xik−1,yk) . q(∗) is the importance density

4: Assign the particle weight wik according to equation (2.74)

5: end for

6: end procedure

This algorithm represents the essence that is involved in any Sequential Monte Carlo

algorithm. There are many ways to avoid degeneracy in the algorithm by implement-

ing a resampling method and a better choice of the importance function. Degeneracy

is phenomenon in the SIS algorithm where, after many iterations, some particles will

have very negligible weights. This implies that there will be some particles that will

not have a meaningful contribution to the construction of the posterior density. For

a complete tutorial on Particle filters, Arulampalam et al. [5] provides a consistent

article. See Andrieu et al. [4] for a comprehensive discussion.
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Chapter 3

Volatility Models in Financial Mathematics

This chapter provides an overview of the Multivariate Stochastic Volatility model,

including fundamental properties. Estimation of unknown matrices and the optimal

Bayesian solution of conditional volatility is presented based on an extended Kalman

filter. The pricing of European options under this stochastic volatility model for the

univariate case is also provided. The literature surrounding stochastic volatility is

vast and quickly emerging as the need to estimate time-varying volatility of financial

variables presents an alternative formulae to understanding their randomness.

The earliest comments on time-varying volatility dates back to the works of Man-

delbrot [41] and Fama [26], while the break-through works in continuous-time finance

of Black and Scholes [10] made it clear that there is evidence of non-stationarity in the

variance of these financial variables. Taylor [51] provided the first publication that

explicitly deals with the Stochastic Volatility model under the univariate case, while

Johnson and Shanno [35] provided the earliest applications of the Stochastic Volatility

model to study option pricing using time-varying volatility. A well known publica-

tion of continuous-time stochastic volatility modeling is that of Hull and White [32],

where they allowed the volatility of spot prices of assets to follow a general diffusion

process. The univariate Stochastic Volatility model presented in Ghysels et al. [27],

Broto and Ruiz [12] and Shephard [1] form the general basis for building Multivariate

Stochastic Volatility models.
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Harvey et al. [29], Danielsson [20], Smith and Pitts [49] and Chan et al. [14]

provided an analysis of the Multivariate Stochastic Volatility model with no-leverage

effects (no correlation between prices and their volatility), while Yu [55] and Omori et

al. [45] provided considerable evidence that measurements and volatility innovations

are correlated (have leverage effects) for returns on stocks. The work of Chan et al.

[14] provided a reasonable framework for modeling the leverage effects of financial

time series. For a comprehensive treatment on Multivariate Stochastic Volatility

modeling the reader is referred to Andersen et al. [2].

3.1 Introduction

The Black-Scholes model for pricing assumes that the volatility of the underlying asset

is constant. That is, if St is the price of the underlying asset, then the Black-Scholes

model for option pricing assumes the lognormal process

dSt
St

= µdt+ σdWt (3.1)

where dWt denotes a standard Wiener process and σ is the constant volatility of St.

This assumption of constant volatility indeed is not the case, as it can be easily seen

from any financial time series plot that the variations in the data points are sporadic

around the mean. In this section, the Black-Scholes model for pricing European

options is extended under stochastic volatility models. For more details on the Black-

Scholes model for option pricing, see Appendix B and for extending the assumptions

of the Black-Scholes model, see Wilmott [54].

Suppose that the underlying asset price St follows the same geometric distribution
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of equation (3.1) as originally assumed by Black and Scholes [10]

dSt
St

= µdt+ σdW
(1)
t (3.2)

where dW
(1)
t denotes a standard Wiener process. However, it is further assumed that

the volatility σ of the underlying asset St is not constant, but that it follows its own

general stochastic process

dσt = p(St, σt, t)dt+ q(St, σt, t)dW
(2)
t (3.3)

where dW
(2)
t denotes another standard Wiener process. One can further assume that

the two Wiener processes in (3.2) and (3.3) are correlated with correlation parameter

ρ. The choice of the drift p and diffusion q are what define the different types of

stochastic volatility models.

Consider now the value of an option under the stochastic volatility model (3.3).

This means that the value of the option V = V (St, σt, t) and is now also dependent on

the realized values of the stochastic volatility and of the price of the underlying asset.

As with the original derivation of the Black-Scholes PDE, we can create a portfolio

containing one option with value V (St, σt, t), a quantity −∆ of the underlying asset

and quantity −∆1 of another option with value V1(St, σt, t). Under this scenario, the

portfolio has value

Π = V −∆S −∆1V1 (3.4)

Taking the stochastic derivative via Ito’s Lemma, the change in the portfolio over a
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dt period of time is given by

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ ρσqS

∂2V

∂S∂σ
+

1

2
q2∂

2V

∂σ2

)
dt

− ∆1

(
∂V1

∂t
+

1

2
σ2S2∂

2V1

∂S2
+ ρσqS

∂2V1

∂S∂σ
+

1

2
q2∂

2V1

∂σ2

)
dt

+

(
∂V

∂S
−∆1

∂V1

∂S
−∆

)
dS

+

(
∂V

∂σ
−∆1

∂V1

∂σ

)
dσ (3.5)

As with the original derivation of the Black-Scholes PDE, the goal is to eliminate all

randomness from the portfolio. This means that eliminating dS and dσ from equation

(3.5) is desired. This can be accomplished if

∂V

∂S
−∆1

∂V1

∂S
−∆ = 0

∂V

∂σ
−∆1

∂V1

∂σ
= 0 (3.6)

Furthermore, in order to get consistent pricing, it is assumed that there are no arbi-

trage opportunities within the portfolio. This means that the return on the portfolio

value is equal to the risk-free rate of return of the portfolio over the dt period. That

is,

dΠ = rΠdt (3.7)

After solving for the portfolio weights ∆ and ∆1 in equation (3.6) and using the
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no-arbitrage condition (3.7)

dΠ =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ ρσqS

∂2V

∂S∂σ
+

1

2
q2∂

2V

∂σ2

)
dt

−
(
∂V

∂σ
/
∂V1

∂σ

)(
∂V1

∂t
+

1

2
σ2S2∂

2V1

∂S2
+ ρσqS

∂2V1

∂S∂σ
+

1

2
q2∂

2V1

∂σ2

)
dt

= r

(
V −

(
∂V

∂S
− ∂V

∂σ
/
∂V1

∂σ

∂V1

∂S

)
S −

(
∂V

∂σ
/
∂V1

∂σ

)
V1

)
dt (3.8)

This equation involves the two unknowns V and V1. So, collecting all V terms into

the left side and all V1 terms into the right side, we get

∂V
∂t

+ 1
2
σ2S2 ∂2V

∂S2 + ρσSq ∂2V
∂S∂σ

+ 1
2
q2 ∂2V

∂σ2 + rS ∂V
∂S
− rV

∂V
∂σ

=
∂V1
∂t

+ 1
2
σ2S2 ∂2V1

∂S2 + ρσSq ∂
2V1

∂S∂σ
+ 1

2
q2 ∂2V1

∂σ2 + rS ∂V1
∂S
− rV1

∂V1
∂σ

Notice that the left hand side equation is a function of V alone and that the right

hand side equation is a function of V1 alone. Since the two options V and V1 will

typically have different structures (payoffs, strikes, expiries, etc.) and depend only

on the independent variables S, σ, and t, one can only obtain equality on both sides

of the equation if each is independent of the contract structure. Thus, there exists a

function λ(S, σ, t) such that the left hand side and the right hand side are equal to λ.

Therefore, the pricing equation for the option contract V under a stochastic volatility

model and an extension of the Black-Scholes option pricing model is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ ρσSq

∂2V

∂S∂σ
+

1

2
q2∂

2V

∂σ2
+ rS

∂V

∂S
+ (p− λq)∂V

∂σ
− rV = 0 (3.9)

where the function λ(S, σ, t) is called the market price of volatility risk.
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3.1.1 Univariate Stochastic Volatility Model

It was shown in the previous section that the model for option pricing can be ex-

tended to include a stochastic volatility model of the underlying asset. Inclusion of a

stochastic volatility model in option pricing can help the problem become more real-

istic than the simplistic assumptions taken by the Black-Scholes model. The financial

industry has taken advantage of this approach and has gravitated towards assuming a

stochastic volatility model when pricing options, in particular, in the pricing of swap-

tion contracts. A swaption contract is a financial derivative that allows the holder of

the swaption to enter into a swap contract with a counterparty at a prescribed strike

price, called, the swap interest rate. For more information on swaptions, we refer the

reader to Hull [31].

One of the greatest successes of stochastic volatility modeling in swaption pricing

is the Stochastic Alpha Beta Rho (SABR) model. This model assumes dynamics

dSt = (St)
βσtdW

(1)
t

dσt = νdW
(2)
t , σ0 = α

E{dW (1)
t dW

(2)
t } = ρ (3.10)

Where the unknown parameters of the model are {α, β, ρ, ν} and are usually cali-

brated by minimizing the square errors between the implied volatility obtained by

the SABR model and the implied volatility observed on the market. Note that the

implied volatility is the volatility such that the price in the Black-Scholes model is

recovered and matches market observed prices. For more information on the SABR

model and calibration of the unknown parameters, the reader is referred to Hagan et

al. [28].
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Another financial industry standard on modeling volatility from market observed

prices is the well-known Generalized Autoregressive Conditional Heteroscedastic model

(GARCH) developed by Engle [24] and Bollerslev [11]. This model has been exten-

sively studied and its applications have covered a wide footprint in the economet-

rics and financial econometrics literature; see for example Zivot [57]. Although the

GARCH model has found many applications in the financial industry and has been

proven to be useful, it has been shown through many empirical studies that the

Stochastic Volatility model considered in this dissertation provides a basis for more

accurate forecasts of volatilities than those provided by the GARCH model; see for

example Koopman et al. [38]. Moreover, the Stochastic Volatility model is considered

to be more consistent with financial theory as opposed to the GARCH model.

The Stochastic Volatility model that is considered in this dissertation is similar

to the SABR model and the GARCH model in that the process attempts to model

the lognormal distribution of the underlying assets and volatilities. Assume again

that the price of the underlying asset is given by St and that it follows the stochastic

differential equation

d log(St) = µtdt+ σtdW
(1)
t

d log(σ2
t ) = {γ + (φ− 1) log(σ2

t )}dt+ σηdW
(2)
t (3.11)

where µt is the drift term, σt is the stochastic volatility of the asset price St and dW i

for i = 1, 2 are two Brownian processes. The model has the unknown parameters

{γ, φ, ση}, where ση represents the volatility of volatility (volvol) parameter. In many

financial time series, it is observed that µt is very small. Thus, it is common practice

to set µt = 0.

By applying a direct Euler discretization scheme with ∆ = 1, we can arrive at the
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Stochastic Volatility (SV) model considered in this dissertation

yt = µt + exp {σ̂t/2}εt, εt ∼ N(0, 1)

σ̂t = γ + φσ̂t + σηηt, ηt ∼ N(0, 1) (3.12)

where yt are the log-returns of the asset price; that is, yt = logSt+1 − logSt, which

means that the model assumes a constant mean µ. To derive equation (3.12), the

transformation σ̂t = log σ2
t is made. It is also assumed that the log-volatility process

σ̂t is a stationary process but persistent, meaning that 0 < φ < 1 is typically greater

than 0.8 when estimated. The unconditional mean of the log-volatility process σ̂t

is given by (1 − φ)−1γ and is interpreted as the long-term log-variance of the asset

return series yt. The unconditional variance of the log-volatility process σ̂t is given

by (1 − φ2)−1σ2
η and it is sometimes referred to as the volatility of volatility of the

log-variance. Furthermore, the stochastic time-varying variance of the log returns yt

conditional on σ̂t is given by

σ2
t = E{(yt − µ)2|σ̂t} = exp σ̂t (3.13)

In the next section, a multivariate Stochastic Volatility model (MSV) is derived

as a natural extension to the Stochastic Volatility Model in equation (3.12).

3.2 Multivariate Stochastic Volatility Model

There has been a considerable amount of attention focused on the empirical modeling

of conditional volatility, in particular, in the multivariate extensions of the univariate

GARCH model; for example, see Bauwens et al. [7] for a recent survey. On the

other hand, the financial econometrics literature has also focused on the development

37



www.manaraa.com

of multivariate stochastic volatility models based on the multivariate extension of

equation (3.12). For a comprehensive treatment of the various extensions of the MSV

model, the reader is referred to Andersen et al. [2]. This dissertation focuses on two

types of multivariate Stochastic Volatility models, one with leverage effects and one

with non-leverage effects.

3.2.1 No-Leverage Effects Model

Consider a time series of p-financial variables yt = (y
(1)
t , ..., y

(p)
t )T observed at time t

and let x = (x
(1)
t , ..., x

(p)
t )T be the corresponding vector of log-volatilities at time t. A

direct extension of the univariate Stochastic Volatility model (3.12) is given by

yt = γγγ + V
1/2
t εεεt

xt+1 = µµµ+ M(xt − µµµ) + ηηηt,

x0 ∼ Np(µµµ,P0) (3.14)

where x0 ∈ Rp is the initial prior, P0 ∈ Rp×p is a covariance matrix, M ∈ Rp×p and

V
1/2
t = diag(exp (x

(1)
t /2), ..., exp (x

(p)
t /2))

µµµ = (µ(1), ..., µ(p)), γγγ = (γ(1), ..., γ(p)) (3.15)

Furthermore,

εεεt ∼ Np(0,ΣΣΣεε), ηηηt ∼ Np(0,Q) (3.16)

where the problem of having no leverage effects amounts to having no correlation

between the two white noise processes εεεt and ηηηt. In order to model the conditional

volatilities, the Multivariate Stochastic Volatility (MSV) model needs to be estimated

based on historical observations to provide parameter estimates of the unknowns.
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The unknown parameters of the MSV model are {γγγ,µµµ,M,ΣΣΣεε,Q} as well as the log-

volatility series {x1, ...,xN} for a data assimilation window [t0, tN ]. As mentioned in

Andersen et al. [2], for identification purposes, the diagonal elements of ΣΣΣεε must be

1, which implies that the matrix ΣΣΣεε is a correlation matrix. It is further noted that

the MSV model is a State-Space model with a linear evolution of the state equation,

as a Markov process, and a nonlinear evolution of the measurement equation (because

xt enters the model in a multiplicative way).

3.2.2 Leverage-Effects Model

The Leverage-Effects MSV model is another extension of the MSV model that allows

for correlation between εεεt and ηηηt. In this manner, the Leverage-Effects MSV models

the correlations between the log-returns time series and the conditional volatility time

series. This is of particular importance since the existence of correlations between

stocks log-returns and their volatility innovations has been shown; see for example

Yu [55] and Omori et al. [45]. The model considered by Chan et al. [14] is given as

yt = γγγ + V
1/2
t εεεt

xt+1 = µµµ+ diag(φ1, ..., φp)︸ ︷︷ ︸
M

(xt − µµµ) + ΨΨΨ1/2ηηηt

x0 ∼ Np(µµµ,ΨΨΨ
1/2P0ΨΨΨ

1/2) (3.17)

where

V
1/2
t = diag(exp (x

(1)
t /2), ..., exp (x

(p)
t /2))

µµµ = (µ(1), ..., µ(p)), γγγ = (γ(1), ..., γ(p))
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The observation and state innovations continue to be normally distributed with co-

variance matrix ΣΣΣεε and ΣΣΣηη, respectively. However, their process is modeled jointly

with εεεt
ηηηt

 ∼ N2p(0,ΣΣΣ), ΣΣΣ =

ΣΣΣεε ΣΣΣεη

ΣΣΣηε ΣΣΣηη


where ΣΣΣεη denotes the correlation between εεεt and ηηηt; that is, the returns of the asset

and its volatility are now correlated. The state-disturbance loading matrix ΨΨΨ1/2 is

defined as the diagonal matrix

ΨΨΨ1/2 = diag(
√
ψ2

1, ...,
√
ψ2
p)

whose diagonal entries ψi are unknown. Notice that ΨΨΨ can be interpreted as the

volatility of the log-volatility process. Indeed, if ΣΣΣηη is the identity matrix, then

covariance of the innovation process η̂ηηt = ΨΨΨ1/2ηηηt is given by ΨΨΨ1/2ΨΨΨ1/2, implying that

variance of each element in η̂ηηt is given by the corresponding diagonal entry in ΨΨΨ1/2ΨΨΨ1/2.

Furthermore, the problem assumes that the state transition matrix M is defined

as a diagonal matrix whose entries are the unknown parameters φi and the (i, j)

element of P0 is the (i, j) element of ΣΣΣηη divided by 1−φiφj satisfying the stationary

condition such that

P0 = MP0M + ΣΣΣηη

As with the no-leverage effects MSV model, this MSV model needs to be estimated

from historical data. The unknown parameters in the model to estimate from data

are {γγγ,µµµ,M,ΨΨΨ,ΣΣΣεε,ΣΣΣηη,ΣΣΣεη} as well as the log-volatility path {x0, ...,xN} for a data

assimilation window [t0, tN ].
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3.3 Estimation of Model Parameters for Non-Leverage Effects

The model considered in this dissertation for estimation and numerical experiments

is the MSV model with no leverage effects model of equation (3.14). Before estimates

and forecasts of the log-volatility times series xt can be obtained during a data assim-

ilation window, note that all unknown matrices and vectors need to be consistently

estimated. To this end, consider again the non-leverage effects MSV model

yt = γγγ + V
1/2
t εεεt

xt+1 = µµµ+ M(xt − µµµ) + ηηηt,

x0 ∼ Np(µµµ,P0) (3.18)

To fit the model to historical time series data yt, linearization of the observation

equation is performed as follows. Define the vector ỹt = [ỹ
(1)
t , ..., ỹ

(p)
t ]′ where ỹ

(i)
t =

log
(
y

(i)
t − γ(i)

)2

for i = 1, ..., p. The nonlinear State-Space model (3.18) then becomes

ỹt = (−1.27)1p + xt + ε̃εεt

xt+1 = µµµ+ M(xt − µµµ) + ηηηt,

x0 ∼ Np(µµµ,P0) (3.19)

where 111p = [1, ..., 1]′ ∈ Rp and ε̃εεt ∈ Rp with ε̃
(i)
t = log

(
ε

(i)
t

)2

+ 1.27. Notice that

observation equation is now linear and

E
{

log
(
ε

(i)
t

)2
}

= −1.27, Var

{
log
(
ε

(i)
t

)2
}

=
π2

2
(3.20)

where the constant vector (−1.27)1p is included in the observation equation to off-set

the mean. However, the State-Space model (3.19) is now a Non-Gaussian State-Space
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model since the new state-error stochastic process ε̃εεt no longer follows a multivariate

Gaussian distribution. It was shown in Harvey et al. [29] that the (i, j) element of

the covariance matrix R of ε̃εεt is given by

(
π2

2

)
rij where rii = 1 and

rij =
π2

2

∞∑
n=1

(n− 1)!

{
∏n

k=1(1/2 + k − 1)}n
ρ2n
ij (3.21)

where ρij is the (i, j) element of the covariance matrix ΣΣΣεε of εεεt. Although the lin-

earized MSV model is no longer Gaussian, estimating the unknown parameters using

a quasi-Maximum Likelihood Estimation (qMLE) methodology may be implemented

by assuming that the new state-error stochastic process ε̃εεt is Gaussian.

Suppose that it is observed from the market a time series sequence {y1, ...,yN} of

the p−financial variables. Under the Gaussian assumption, the log-likelihood of the

data given the model is given as

ln
(
p(ỹ1, ..., ỹN |{x̂i}Ni=1)

)
=

N∑
t=1

ln
(
φ(ỹt; ȳt|t−1,Vt|t−1|{x̂i}Ni=1)

)
(3.22)

Where φ(ỹt; ȳt|t−1,Vt|t−1|{x̂i}Ni=1) is the multivariate normal distribution evaluated at

ỹt with mean ȳt|t−1 and covariance matrix Vt|t−1 given the state sequence {x̂Ni=1}.

In order to describe the q-MLE procedure, suppose that the following State-Space

model with unknown parameters {γγγ,µµµ,M,R,Q} is given

ỹt = γγγ + Hxt + R1/2ε̃εεt

xt = µµµ+ Mxt−1 + Q1/2ηηηt (3.23)

where εεεt, ηηηt ∼ Np(000, IIIp×p). It is noted that in equation (3.23), the model incorpo-

rates the square root decompositions R1/2 and Q1/2 such that the covariance of the
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stochastic processes R1/2ε̃εεt and Q1/2ηηηt are given by R1/2RT/2 = R and Q1/2QT/2 = Q,

respectively. The state sequence {x̂Ni=1(γγγ,µµµ,M,R,Q)} and its state covariance ma-

trix sequence {PN
i=1(γγγ,µµµ,M,R,Q)} can be obtained via the Kalman filter (or any

data assimilation method) as a function of the given parameters and, therefore, a

value for the log-likelihood function via equation (3.22) can also be obtained. If the

parameters (γγγ,µµµ,M,R,Q)} are all stacked into a single vector θθθ, the value of the

function φ(ỹt; ȳt|t−1,Vt|t−1|{x̂(θθθ)i}Ni=1) is given by

ỹt|x̂t−1;θθθ ∼ Np(ȳt|t−1(θθθ),Vt|t−1(θθθ)) (3.24)

where

ȳt|t−1(θθθ) = γγγ(θθθ) + H(θθθ)x̂t|t−1(θθθ)

Vt|t−1 = H(θθθ)PPP t|t−1H
T (θθθ) + R1/2(θθθ)RT/2(θθθ) (3.25)

Furthermore, the value of the log-likelihood function of the data given the parameter

vector θθθ is calculated as

ll(θθθ) =
N∑
t=1

log φ(ỹt; ȳt|t−1,Vt|t−1|{x̂t}Ni=1)

=
Np

2
log(2π) +

1

2

N∑
t=1

log
(
det{Vt|t−1}

)
+

1

2

N∑
t=1

(
ỹt − ȳt|t−1(θθθ)

)T V−1
t|t−1

(
ỹt − ȳt|t−1(θθθ)

)
(3.26)

The q-MLE methodology can be implemented for the MSV model with no leverage ef-

fects by letting H = Ip×p and γγγ = (−1.27)1p in equation (3.23). The q-MLE method-

ology can be implemented in an optimization algorithm to minimize the negative
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log-likelihood function of equation (3.22) to obtain optimal parameters (estimates).

The corresponding procedure to estimate the unknown model parameters is given in

Algorithm 3.1 and details underlying this procedure can be found in Chapter 50 of

the Handbook of Econometrics [25].

Algorithm 3.1: q-MLE State-Space Estimator

Input: Sequence of Data {yt}Nt=1 and initial parameter estimate θθθ0

Output: Optimized parameter θθθ∗ and Kalman filter sequence {x̂t|t(θθθ∗)}Nt=1

1: procedure q-MLE(y, θθθ0)

2: for k = 1,2,... do

3: Search for θθθk such that −ll(θθθk) < −ll(θθθk−1) . see equation (3.22)

4: Obtain Kalman filter sequence {x̂t|t(θθθk)}Nt=1

5: Evaluate convergence of θθθk via a tolerance function

6: if Convergence criteria for θθθk is satisfied then

7: θθθ∗ = θθθk and get {x̂t|t(θθθ∗)}Nt=1

8: else

9: Continue to next iteration

10: end if

11: end for

12: end procedure
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Chapter 4

Sensitivity Analysis

Model-based approach for stochastic volatility requires accurate specification of the

unknown parameters used to represent the model. The q-MLE methodology provides

a consistent estimation, based on statistical analysis, of the unknown matrices in the

model, in particular, the state and observation error covariance specifications. How-

ever, volatility forecast errors can be attributed to misspecification of the ”true” co-

variance matrices that underly the ”true” stochastic volatility model as these volatility

forecasts are dependent on the specification of the input parameters (estimated pa-

rameters). Assessing the forecast errors in variational data assimilation systems due

to variations and misspecification of input parameters such as observations, state and

error covariance matrices, have been extensively studied over the years. Baker and

Daley [6] have shown that forecast errors due to online observations can be evalu-

ated based on an all at once forecast sensitivity analysis derived from the adjoint

of the data assimilation system (adjoint-DAS). The adjoint-DAS applications have

been extended by Daescu [16] to incorporate forecast sensitivity analysis due to state

and observation error covariance model specifications in a nonlinear four-dimensional

variational data assimilation system (4D-Var) DAS. The practical ability to estimate

the forecast error sensitivities due to observation and state error covariance matrix

specifications was shown by Daescu and Todling [19] for a three-dimensional varia-

tional data assimilation system (3D-Var DAS). Daescu and Langland [18] presented a
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complete review of the 4D-Var system and provided additional forecast error sensitiv-

ity equations for the 4D-Var system along with their properties for and applications

with parameter tuning and impact assessment. They also presented numerical re-

sults with the Naval Research Laboratory Atmospheric Data Assimilation System -

Accelerated Representer and the Navy Operational Global Atmospheric Prediction

System (NAVDAS-AR/NOGAPS) to emphasize the use of forecast error sensitivity

information for analyzing and diagnosing the DAS performance.

The work in this chapter extends the adjoint-based approach for sensitivity analy-

sis and impact estimation of the 4D-Var DAS to the linearized Multivariate Stochastic

Volatility model (MSV) and provides equations to evaluate and assess the volatility

forecast error sensitivities with respect to input parameters. These sensitivities are

used to diagnose the current state and observation error covariance matrix speci-

fications obtained from the q-MLE estimation approach. Guidance tools for error

covariance parameter online tuning and assessment will also be presented for the

MSV model as an adaptive approach.

4.1 The Analysis Equation

Consider again the linearized Multivariate Stochastic Volatility (MSV) model dis-

cussed in Chapter 3

ỹt = (−1.27)1p + xt + ε̃εεt

xt+1 = µµµ+ M(xt − µµµ) + ηηηt,

x0 ∼ Np(µµµ,P0) (4.1)

where xt is the vector of log-volatilities, x0 is the prior (background) state estimate

with prior covariance matrix P0, and ỹt ∈ Rp is the vector of observational data (as
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defined in Chapter 3). It is also assumed that the errors are white noise processes

that have the following distributions

ε̃εεt ∼ Np(000,R) ηηηt ∼ Np(000,Q) (4.2)

As mentioned before, this MSV model belongs to a general class of linear State-Space

models that have the following form

ỹt = γγγ + Hxt + ε̃εεt

xt = µµµ+ Mxt−1 + ηηηt (4.3)

where the errors are given as in equation (4.2).

If the parameters {γγγ,µµµ,M,H,R,Q} are all known, then we can use a standard

Kalman filter to obtain an analysis xt|t, given all information up to t, for each time

iteration. Furthermore, notice that at the next iteration t+ 1, we can make a predic-

tion xt+1|t from xt|t. Thus, at t+ 1, the prediction xt+1|t becomes the new prior state

estimate for the analysis xt+1|t+1. Therefore, to ease the notation in this chapter, the

time index t is dropped and refer to xa as the analysis of xt at the current iteration

with covariance matrix Pa and xb as the prior state estimate with covariance matrix

B.

In general, variational data assimilation provides an analysis xa to the true state

x by minimizing the cost functional

J(x) =
1

2

(
x− xb

)T
B−1

(
x− xb

)
+

1

2
(h(x)− y)T R−1 (h(x)− y) (4.4)

where h(∗) is the linear operator that maps the states into observations and it is
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defined by

h(x) = γγγ + Hx (4.5)

Recall that if the Kalman filter is used to obtain a state estimate, this estimate is

equivalent to minimizing equation (4.4). By direct calculation of the Jacobian of (4.4)

yields

∇J(x) = B−1
(
x− xb

)
+ HTR−1 (h(x)− y) = 000 (4.6)

The solution to (4.6) is denoted as xa, representing a single outer loop iteration of

the analysis, and it is given by

xa = xb + K
[
y − h(xb)

]
(4.7)

where K is the gain matrix and it is given by

K =
[
B−1 + HTR−1H

]−1
HTR−1 = BHT [HBHT + R]−1 (4.8)

It is often the case where the analysis equation is performed in a two-stage procedure

by first solving the linear system

[HBHT + R]z = y − h(xb) (4.9)

for the vector z and then followed by a post-multiplication operation

xa = xb + BHTz (4.10)

From equation (4.7), it is observed that the analysis equation is dependent on the
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input parameters; that is,

xa = xa(y,xb,B,R) (4.11)

Therefore, the focus of this chapter is to provide sensitivity analysis on xa due to

variations in each input in order to assess model performance based on state forecasts.

Furthermore, sensitivity analysis is extended to the linearized Multivariate Stochastic

Volatility model in order to provide diagnostics to model performance of the forecasted

volatilities as well as show how one can implement an adaptive tuning procedure to

obtain improved volatility estimates.

4.2 Forecast Sensitivity

Once a forecast of the states have been made, the evaluation of the forecast sensitivity

with respect to each input is done via a forecast score function. This forecast score

is defined as a short-range forecast-error measure and it is usually presented as

e(xa) =
(
xf − xvf

)T
E
(
xf − xvf

)
(4.12)

where xf = Mtk,tf (xa) is the state forecast at verification time tf initiated from xa

at time of analysis tk with the state model represented as

M(x) = µµµ+ Mx (4.13)

The vector xvf is the verifying analysis at time tf and serves as a proxy to the true state,

and E is a diagonal matrix of weights. For our applications in stochastic volatility,

E = Ip×p, however, other appropriate definitions of E may include a covariance matrix

representation used to weight the forecasts.

The first-order variation in the forecast aspect e(xa) induced by the variation δxa
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of the analysis is defined as

δe =

〈
∂e

∂xa
, δxa

〉
(4.14)

where 〈·, ·〉 denotes the Euclidean inner product of two vectors, 〈u,v〉 = uTv. By

direct computation of equation (4.12), the forecast sensitivity to analysis is obtained

as

∂e

∂xa
= 2[Ma

k,f ]
TE
(
xf − xvf

)
(4.15)

where [Ma
k,f ]

T denotes the adjoint of the tangent linear model from time tk to time

tf evaluated along the analysis trajectory; that is, if tf is the N−step ahead forecast

initiated from the analysis xa at tk, then

Ma
k,f = MNMN−1 . . .M (xa) (4.16)

The analysis equations in (4.7) - (4.8) provide the basis in deriving forecast sen-

sitivities with respect to the other input parameters and are used to express the

first-order variation δxa in (4.14) in terms of the other input variations; for example,

in terms of variations in R and B. Furthermore, it is noted that the forecast sensitiv-

ities with respect to a matrix X ∈ Rp×p is defined as the matrix of first-order partial

derivatives

∂e

∂X
=

[
∂e

∂Xij

]
i,j=1:p

∈ Rp×p (4.17)
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4.3 Forecast Sensitivities to Observations and Background

It was shown by Baker and Daley [6] that the forecast sensitivities with respect to

observations and background within a linear analysis scheme are given as

∂e

∂y
= KT ∂e

∂xa
∈ Rp (4.18)

∂e

∂xb
=

[
In×n −HTKT

] ∂e
∂xa

=
∂e

∂xa
−HT ∂e

∂y
∈ Rn (4.19)

Note from equation (4.18) that the identity matrix In×n matches the dimension of

the states x and the corresponding xb−sensitivity. On the other hand, the states

(log-volatilities) in the MSV model have the same dimensions as the observations

(log-returns) such that n = p. This need not be the case, thus, the sensitivities are

presented as if the states had different dimensions as the observations; that is, it is

assumed x ∈ Rn and y ∈ Rp. It is also noticed that the xb−sensitivity equation

(4.19) is formally valid for a linear observation operator, h(x) = γγγ + Hx, since it

neglects the dependence of xb in the case of a linearized observation model

h(x) ≈ h(xb) + H(x− xb) (4.20)

where

H =

[
∂h

∂x

]
|x=xb

∈ Rp×n (4.21)

Therefore, for non-linear models, equation (4.19) can be interpreted as a vector no-

tation when deriving forecast sensitivities with respect to the background covari-

ance matrix B. For the case of nonlinear models, Daescu [16] presents the exact

xb−sensitivity equations. Since the MSV model considered in this dissertation has

both linear observation and state equations, equation (4.19) becomes valid for the
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analysis.

4.4 Forecast R−Sensitivity

Daescu and Langland [17] derived the forecast sensitivity with respect to the obser-

vation error covariance matrix R. In order to derive this forecast error sensitivity

with respect to R, the first-order variation δxa induced by a perturbation δR ∈ Rp×p

in the covariance model is calculated. From equation (4.7), the first-order variation

with respect to a perturbation δK in the gain matrix is given by

δxa = δK [y − h(xa)] (4.22)

Now, the first-order variation δK induced by a perturbation δR in the observation

covariance model can be calculated directly from equation (4.8) and it is given by

δK = −BHT
[
HBHT + R

]−1
δR
[
HBHT + R

]−1
= −KδR

[
HBHT + R

]−1

(4.23)

where the identity δX−1 = −X−1δXX−1 was used. From equation (4.14), the forecast

variation δe induced by a perturbation δR in the observation covariance model is given

by

δe = −
〈
∂e

∂xa
,−KδR

[
HBHT + R

]−1 [
y − h(xb)

]〉
Rn

(4.24)

The adjoint KT of the gain matrix may be used in equation (4.24) and equation (4.9)

to get

δe = −
〈

KT ∂e

∂xa
, δR

[
HBHT + R

]−1 [
y − h(xb)

]〉
Rp

= −

〈
KT ∂e

∂xa︸ ︷︷ ︸
∂e
∂y

, δRz

〉
Rp

(4.25)
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Therefore, the forecast R−sensitivity is given by the rank-one matrix

∂e

∂R
= − ∂e

∂y
zT ∈ Rp×p (4.26)

4.4.1 R−Sensitivity with Scalar Inflation

The forecast sensitivity with respect to a parametric representation of the observation

covariance matrix R is now considered in this section. When performing tuning of the

covariance matrix R, a practical approach is to define the parametric representation

of the covariance matrix

R(so) = soR (4.27)

where so > 0 is a scalar coefficient used to adjust the information provided by the

observations y. The variations δR in the covariance model due to variations δso in

the parameter so can be represented as

δR = δsoR (4.28)

Substituting equation (4.28) into equation (4.25) we get

δe = −
〈
∂e

∂y
, δsoRz

〉
Rp

(4.29)

Therefore, the forecast sensitivity due to a variation in the covariance inflation pa-

rameter so is given by

∂e

∂so
= −(Rz)T

∂e

∂y
(4.30)
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An alternative formulation to equation (4.30) can be obtain from equations (4.9)-

(4.10). From equation (4.10)

H(xa − xb) = HBHTz (4.31)

Which can then be substituted into equation (4.9) to obtain

Rz = y − h(xb) + H(xb − xa) (4.32)

By definition, h(xb) = γγγ + Hxb. Thus, equation (4.32) becomes

Rz = y − h(xa) (4.33)

Substituting equation (4.33) into equation (4.30), the alternative formulation of the

forecast sensitivity to the observation error covariance scaling is

∂e

∂so
= (h(xa)− y)T

∂e

∂y
(4.34)

4.4.2 R−Sensitivity with Matrix Decomposition

New forecast sensitivity results with respect to matrix square root decompositions

are derived in this section as an extension to the results found in the work of Daescu

and Langland [17]. When conducting the q-MLE estimation procedure, it is common

practice to estimate the square root of the covariance matrix rather than the covari-

ance matrix itself. Therefore, it is useful to also obtain the forecast R−sensitivity

with respect to the matrix decomposition R1/2, where R1/2 satisfies R = R1/2RT/2.

From equation (4.23), the variation δK induced by a perturbation δR1/2 in the de-
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composition R = R1/2RT/2 is given by

δR = δR1/2RT/2 + R1/2(δR1/2)T (4.35)

Recall that for any two vectors u ∈ Rp, v ∈ Rn, and any matrix X ∈ Rp×n, the

following relationship between inner products holds

〈u,Xv〉Rp =
〈
uvT ,X

〉
Rp×n (4.36)

Thus, by using the relationship (4.36) in equation (4.25)

δe = −
〈
∂e

∂y
zT , δR

〉
Rp×p

= −
〈
∂e

∂y
zT , δR1/2RT/2 + R1/2(δR1/2)T

〉
Rp×p

= −Tr

(
∂e

∂y
zTR1/2[δR1/2]T

)
− Tr

(
∂e

∂y
zT δR1/2RT/2

)
= −Tr

(
∂e

∂y
zTR1/2[δR1/2]T

)
− Tr

(
RT/2 ∂e

∂y
zT δR1/2

)

= −Tr

([
∂e

∂y
zTR1/2

]
[δR1/2]T

)
− Tr

[z( ∂e
∂y

)T
R1/2

]T
[δR1/2]


= −Tr

([
∂e

∂y
zTR1/2

]
[δR1/2]T

)
− Tr

([
z

(
∂e

∂y

)T
R1/2

]
[δR1/2]T

)
(4.37)

Therefore, the variation in the forecast error induced by the perturbation δR1/2 is

δe = −

〈(
∂e

∂y
zT + z

(
∂e

∂y

)T)
R1/2, δR1/2

〉
Rp×p
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Thus, it is concluded that the R1/2−sensitivity is given by

∂e

∂R1/2
= −

(
∂e

∂y
zT + z

(
∂e

∂y

)T)
R1/2 (4.38)

4.5 Forecast B−Sensitivity

Daescu and Langland [17] derived the forecast sensitivity with respect to the back-

ground error covariance matrix B and their results are derived in this section. First,

the calculation of the first-order variation δxa induced by a perturbation δB ∈ Rn×n

in the background error covariance model is needed. This in turn relies on deriv-

ing the first-order variation δK of the gain matrix in equation (4.8) induced by the

first-order variation δB in the background covariance model and it is given by

δK = δBHT
[
HBHT + R

]−1 −BHT
[
HBHT + R

]−1
HδBHT

[
HBHT + R

]−1

= [In×n −KH] δBHT
[
HBHT + R

]−1
(4.39)

where we once again made use of the identity δX−1 = −X−1δXX−1. From equation

(4.14), equation (4.22) and equation (4.39), the forecast variation δe induced by a

variation δB in the background covariance model is given by

δe =

〈
∂e

∂xa
, [In×n −KH] δBHT

[
HBHT + R

]−1 [
y − h(xb)

]〉
Rn

=

〈
[In×n −KH]T

∂e

∂xa
, δBHT

[
HBHT + R

]−1 [
y − h(xb)

]〉
Rn

(4.40)
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Where we have made use of the adjoint of the matrix [In×n −KH] between inner

products. By using equation (4.9) and equation (4.19), equation (4.40) becomes

δe =

〈
∂e

∂xb
, δBHTz

〉
Rn

(4.41)

Therefore, the forecast B−sensitivity becomes the rank-one matrix

∂e

∂B
=

∂e

∂xb
(
HTz

)T ∈ Rn×n (4.42)

where the inner product property in equation (4.36) was once again employed.

4.5.1 B−Sensitivity with Scalar Inflation

Consider now the forecast sensitivity with respect to a parametric representation of

the background covariance matrix B. When performing tuning of the covariance

matrix B, a practical approach is to define the parametric representation of the

covariance matrix

B(sb) = sbB (4.43)

where sb > 0 is a scalar coefficient used to adjust the information provided by the

background information. The variations δB in the covariance model due to variations

δsb in the parameter sb can be represented as

δB = δsbB (4.44)

Substituting equation (4.44) into equation (4.41) and with the aid of the analysis

equation (4.10), the first-order variation in the forecast aspect δe can be expressed in
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terms of the inflation parameter sb as

δe = δsb
〈
∂e

∂xb
,xa − xb

〉
Rn

(4.45)

Therefore, the forecast sensitivity with respects to the covariance inflation parameter

sb is given by

∂e

∂sb
= (xa − xb)T

∂e

∂xb
(4.46)

It is also noted that the following relationship can be derived from equation (4.6) by

evaluating the Jacobian at xa; that is, ∇J(xa) = 0 and using equation (4.18)-(4.19):

[h(xa)− y]T
∂e

∂y
+ (xa − xb)T

∂e

∂xb
= 0 (4.47)

Equation (4.47) is an intrinsic property of the variational problem (4.4) and can

be used to derive an alternative formulation of the sb−sensitivity in terms of an

observation space equation. Substituting equation (4.47) into equation (4.46), an

observation space equation to the sb−sensitivity can be written as

∂e

∂sb
= [y − h(xa)]T

∂e

∂y
(4.48)

Consequently, from equation (4.34) and equation (4.48), the following identity is

derived

∂e

∂so
+
∂e

∂sb
= 0 (4.49)

and reflects the intrinsic property of the variational optimization problem: multipli-

cation of all error covariances in the system by the same (positive) constant has no

impact on the analysis.
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4.5.2 B−Sensitivity with Matrix Decomposition

New forecast sensitivity results with respect to matrix square root decompositions are

derived in this section as an extension to the results found in the work of Daescu and

Langland [17]. The forecast sensitivity is derived in this section with respects to the

square root decomposition of the background error covariance matrix B; that is, with

respect to decomposition B1/2 where B = B1/2BT/2. The steps are similar to those

in deriving the sensitivity with respects to R1/2. The variations in B to variations in

the square root matrix B1/2 are given by

δB1/2 = δB1/2BT/2 + B1/2
(
δB1/2

)T
(4.50)

Substituting equation (4.50) into equation (4.41), with the aid of identity (4.36) and

the properties of the trace operator

δe =

〈
∂e

∂xb
(
HTz

)T
, δB1/2BT/2 + B1/2

(
δB1/2

)T︸ ︷︷ ︸
δB

〉
Rn×n

= Tr

([
∂e

∂xb
(
HTz

)T] [
δB1/2BT/2

]T)
+ Tr

([
∂e

∂xb
(
HTz

)T] [
B1/2

(
δB1/2

)T]T)
= Tr

([
∂e

∂xb
(
HTz

)T
B1/2

] [
δB1/2

]T)
+ Tr

([
BT/2 ∂e

∂xb
(
HTz

)T] (
δB1/2

))

= Tr

([
∂e

∂xb
(
HTz

)T
B1/2

] [
δB1/2

]T)
+ Tr

[(HTz
)( ∂e

∂xb

)T
B1/2

]T (
δB1/2

)
= Tr

([
∂e

∂xb
(
HTz

)T
B1/2

] [
δB1/2

]T)
+ Tr

([(
HTz

)( ∂e

∂xb

)T
B1/2

] [
δB1/2

]T)

=

〈[
∂e

∂xb
(
HTz

)T
+
(
HTz

)( ∂e

∂xb

)T]
B1/2, δB1/2

〉
Rn×n

(4.51)
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Therefore, it is concluded that the forecast sensitivity with respects to the matrix

decomposition B1/2 is given by

∂e

∂B1/2
=

[
∂e

∂xb
(
HTz

)T
+
(
HTz

)( ∂e

∂xb

)T]
B1/2 (4.52)

4.6 Summary of Forecast Sensitivities

A summary of equations used to evaluate the forecast sensitivity with respect to var-

ious input parameters of a data assimilation system with a single outer loop iteration

is provided in table 4.1.
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Parameter Significance Dimension Forecast Sensitivity

y
Observation vec-
tor

Rp KT ∂e

∂xa

xb
Background state
vector Vector

Rn
∂e

∂xa
−HT ∂e

∂y

R
Observation error
covariance model

Rp×p − ∂e
∂y

zT

so
Observation error
covariance weight

R1 [h(xa)− y]T
∂e

∂y

R1/2

Observation error
covariance square
root

Rp×p −

(
∂e

∂y
zT + z

(
∂e

∂y

)T)
R1/2

B
Background error
covariance model

Rn×n
∂e

∂xb
(HTz)T

sb
Background error
covariance weight

R1 [y − h(xa)]T
∂e

∂y

B1/2

Background error
covariance square
root

Rn×n

[
∂e

∂xb
(
HTz

)T
+
(
HTz

)( ∂e

∂xb

)T]
B1/2

Table 4.1: Forecast sensitivity to various input parameters of a data assimilation system
with a single outer loop iteration

4.6.1 Forecast Sensitivity of the MSV Model

New results are derived in this section for the forecast sensitivity analysis with respect

to the various inputs for the Multivariate Stochastic Volatility (MSV) model of equa-

tion (4.1). If the parameters of the MSV model {µµµ,M,R,Q,P0} are all known, then

a Kalman filter may be implemented to obtain estimates of the unobservable state

sequence xt of log-volatilities, for each time iteration t. Furthermore, this Kalman

filter solves the data assimilation problem of equation (4.4) at each iteration t, there-

fore, the forecast sensitivities of the MSV model can be derived. To this end, define

the following variables:
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• Let xb = xt|t−1 be the one-step ahead state model prediction from t − 1 and

let xa = xt|t be the analysis of the states (log-volatilities) obtained from the

Kalman filter at each iteration t. See Section 2.3 for more information on the

Kalman filter and its notation. Notice that, although xt|t−1 is the state model

prediction from the previous time step t− 1, at the new iteration t, xt|t−1 now

becomes the background estimate of the states.

• Let H = Ip×p be the identity observation operator that translates the states

to observations. Recall that within the MSV model, the states have the same

dimension as the observations (n = p) since we seek the stochastic volatility of

each financial variable.

• Let B = Pt|t−1 be the one-step ahead state error covariance matrix prediction

from t− 1 obtained from the Kalman filter. Notice that, although Pt|t−1 is the

state covariance prediction from the previous time step t−1, at the new iteration

t, Pt|t−1 now becomes the background covariance estimate of the states.

• The observation error covariance matrix R of the transformed time series ỹt

remains unchanged and it represents the precision of the normal distribution

approximation to the multivariate log of χ2 distribution.

The sensitivity analysis equations for the Multivariate Stochastic Volatility using the

Kalman filter are give in Table 4.2. It is noted that the Kalman filter solution, at each

iteration t, for the MSV model with known parameters and known prior distribution

x1|0 ∼ Np(000,P0) is given as follow:
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Parameter Significance Dimension Forecast Sensitivity

ỹt
Observation vec-
tor

Rp KT ∂e

∂xt|t

xt|t−1
Background state
vector Vector

Rn
∂e

∂xt|t
− ∂e

∂ỹt

R
Observation error
covariance model

Rp×p − ∂e

∂ỹt
zTt

so
Observation error
covariance weight

R1
[
h(xt|t)− ỹt

]T ∂e

∂ỹt

R1/2

Observation error
covariance square
root

Rp×p −

(
∂e

∂ỹt
zTt + zt

(
∂e

∂ỹt

)T)
R1/2

Pt|t−1
Background error
covariance model

Rn×n
∂e

∂xt|t−1

zTt

sb
Background error
covariance weight

R1
[
ỹt − h(xt|t)

]T ∂e

∂ỹt

P
1/2
t|t−1

Background error
covariance square
root

Rn×n

[
∂e

∂xt|t−1

zTt + zt

(
∂e

∂xt|t−1

)T]
P

1/2
t|t−1

Table 4.2: Forecast sensitivity to various input parameters of a MSV Model within a data
assimilation system with a single time outer loop iteration

Between observations,

xt+1|t = M(xt|t), (4.53)

Pt+1|t = MPt|tM
T + Q (4.54)

At observations,

xt|t = xt|t−1 + K(ỹt − xt|t−1), (4.55)

Pt|t = Pt|t−1 −KPt|t−1 (4.56)
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where the gain matrix is given by

K = Pt|t−1[Pt|t−1 + R]−1 (4.57)

Moreover, the vector zt is defined as the solution at each iteration t to the linear

system [
Pt|t−1 + R

]
zt = ỹt − h(xt|t−1) (4.58)

where the observation operator is defined as h(x) = (−1.27)1p + x. The forecast

score at each iteration t, defined as the as the one-step ahead short-range forecast-

error measure, is given as

e(xt|t) =
(
xt+1|t − xvt+1

)T (
xt+1|t − xvt+1

)
(4.59)

where xt+1|t = M(xt|t) is the state forecast at verification time t + 1 initiated from

xt|t at time of analysis t. As discussed before, the vector xvt+1 is the verifying analysis

at time t + 1 and serves as a proxy to the true state of log-volatilities. The forecast

sensitivity to analysis within this framework is therefore given by

∂e

∂xt|t
= 2MT

(
xt+1|t − xvt+1

)
(4.60)

The forecast sensitivities can now be evaluated as in Table 4.2 given the information

provided.

4.7 Adaptive Tuning of Covariance Parameters

The work of Song et al. [50] provide an adjoint-based approach to achieving adap-

tive tuning of the background error covariance matrix specification within a hybrid
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ensemble Kalman filter. The forecast error sensitivity equations in Table 4.1 or the

forecast error sensitivities of the MSV model in Table 4.2 not only provide a tool for

diagnosing model performance, but also provide tools for tuning model error covari-

ance matrices. The derivative information provided in the Table 4.2 provide guidance

on reducing the forecast error e using a steepest descent direction in an update of the

form

X(k+1) = X(k) − αk
∂e(xa)

∂X

∣∣∣∣
X=X(k)

(4.61)

where X denotes the value of the parameter of interest; for example, X = R if tuning

of the observation error covariance matrix is desired. In our analysis, it is noted that

the linearization of the MSV model is done in terms of the observation equation. This

linearized observation equation will have a non-Gaussian probability distribution due

to the log transformations. Thus, it is of interest to our work to provide an adaptive

tuning of the observation error covariance matrix R since the accuracy of the log-

volatility estimates xt|t will be dependent on accurately modeling the covariance R.

This can be seen from the quasi-MLE method as this method tries to approximate

the log of a χ2 distribution with a normal distribution by optimally specifying R.

Although an all at once estimate of R can produce reasonably good volatility esti-

mates within the quasi-MLE method, an adaptive tuning of R may provide improved

volatility estimates during each iteration. In what follows, a practical implementation

of adaptive tuning of the observation error covariance matrix R is presented. Note,

however, that this can also be applied for tuning the background error covariance

matrix with implications of updating prior estimates during each time iteration.

The quasi-MLE method is implemented for a time window [t0, tN ] and produces

MLE estimates of the unknown parameters. From the estimated model (unknown

parameters have been estimated), an analysis sequence for the time window [t0, tN ]
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can be provided based on the Kalman filter. The forecast score function can then be

evaluated at each time iteration t ∈ [t0, tN ] to produce diagnostics of model perfor-

mance. The proxy selected for evaluation of the forecast score function is subjective

and left for the analyst to provide input on their real-world view of forecasted volatil-

ities. Evaluation of the forecast score at each time iteration provides a sequence of

forecasted errors from which the corresponding sensitivities can be evaluated in terms

of the quasi-MLE estimates. Using the steepest descent algorithm, a new parameter

estimate can be obtained via equation (4.61) during each time iteration t. The qual-

ity of the new parameter estimate is then evaluated via the forecast score function.

If the forecast score is reduced during the time iteration t, then the step size α is

updated and the parameter estimate is accepted as an improved parameter to obtain

a new analysis based on improved parameters that will then be used for the next

time iteration t + 1. Otherwise, a new steepest descent iteration is defined based on

a new step size α. It is noted that in practice, data assimilation is computationally

expensive, thus, it is impractical to implement more than one iteration of the steepest

descent algorithm during each time iteration t. Therefore, if during an iteration t the

forecast score cannot be reduced, the update is rejected and the quasi-MLE estimates

are accepted.

The selection of the step size α is initialized as α0 = 1, and is dynamically updated

according [44]. Thus, if the forecast error is reduced and the new parameter estimate

is accepted, the step-size is updated as

α =
2 (e(xa)− e(xnew))∥∥ ∂e

∂X

∥∥2 (4.62)

which is the step-size obtained from minimizing the quadratic function based on the

data e(xa), e(xnew) and
∥∥ ∂e
∂X

∥∥2
. Algorithm 4.1 provides the procedure for the new
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results of adaptive tuning of the observation error covariance matrix R1/2 within the

Multivariate Stochastic Volatility model.

Algorithm 4.1: Procedure to update the model error covariance matrix using sensitivities

Input: Estimated model parameters {µµµ,γγγ,M,H,R,Q}, background state xb and back-

ground covariance matrix B at current assimilation iteration and observations y at

current assimilation iteration

Output: Updated error covariance R and updated analysis state xa

1: procedure Update R Covariance(R, α0)

2: α = α0 . Initialize step-size

3: xa = KF(xb,y,B,R,Q) . Use Kalman Filter to obtain analysis

4: p = − ∂e

∂R1/2
. Set the search direction in terms of square-root matrix

5: R
1/2
New = R1/2 + αp . Calculate new square-root matrix

6: RNew = R
1/2
NewR

T/2
New . Calculate new covariance

7: xaNew = KF(xb,y,B,RNew,Q) . Redo analysis with new specification

8: ε = e(xaNew)− e(xa) . Evaluate forecast error impact

9: if ε < 0 then . Forecast error was decreased

10: R = RNew . Update observation error covariance

11: xa = xaNew . Update analysis state

12: α =
2 (e(xa)− e(xnew))∥∥ ∂e

∂X

∥∥2 . Update step-size for next assimilation iteration

13: else . Reject the updated observation error covariance

14: α = 0.5α . Reduce the step-size for next assimilation iteration

15: end if

16: Continue to next assimilation iteration

17: end procedure
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Chapter 5

Numerical Experiments

Numerical experiments with the Multivariate Stochastic Volatility model are pre-

sented in this section to test the q-MLE estimation methodology and to be able to

provide model performance diagnostics in terms of sensitivity analysis. The sensitivity

analysis is extended to include an adaptive tuning of the observation error covariance

matrix R in order to provide improved volatility estimates. The validity and ben-

efits of these approaches are shown in two numerical experiments. First numerical

experiment provides a proof-of-concept where the simulation of volatility data and

observations, in accordance to the Multivariate Stochastic Volatility model, is gen-

erated to estimate the model and perform sensitivity analysis and adaptive tuning.

Diagnostics of the proof-of-concept experiments are performed in terms of the ”true”

simulated volatility to demonstrate superiority of the adaptive tuning procedure when

estimating volatilities with the correct volatility proxy. The second numerical exper-

iment extends these methodology to a set of foreign exchange rate time series data

where the Multivariate Stochastic Volatility model is estimated based on the q-MLE

methodology, and sensitivity analysis is performed to provide diagnostics of model

performance. Since volatility data of foreign exchange rates are not observable, the

selection of appropriate proxies is discussed for adaptive tuning of R to provide im-

proved volatility estimates.
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5.1 Proof-of-Concept

For the first numerical experiment, a time series of 4 financial variables (p = 4)

yt = (y
(1)
t , y

(2)
t , y

(3)
t , y

(4)
t )T is considered with their corresponding log-volatility time

series xt = (x
(1)
t , x

(2)
t , x

(3)
t , x

(4)
t )T . The Multivariate Stochastic Volatility Model (5.1)

is then used to generate the time series {yt} and {xt} for a training window and a

test window each containing 900 daily observations for a total of 1800 days; that is,

for a total of 5 years. The MSV model considered for the data generation is

yt = V
1/2
t εεεt

xt+1 = Mxt + ηηηt,

x0 ∼ Np(000,P0) (5.1)

with x0 ∈ Rp as the initial prior, P0 ∈ Rp×p as the initial state covariance matrix and

V
1/2
t = diag(exp (x

(1)
t /2), exp (x

(2)
t /2), exp (x

(3)
t /2), exp (x

(4)
t /2))

M = I4×4 (5.2)

Furthermore, the random processes are defined as

εεεt ∼ Np(0,ΣΣΣεε), ηηηt ∼ Np(0,Q) (5.3)
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with covariance matrices taken as

ΣΣΣεε =



1 0.84 0.74 0.80

0.84 1 0.84 0.92

0.74 0.84 1 0.81

0.80 0.92 0.81 1


, Q = 10−3



9.65 11.42 3.97 12.07

11.42 20.43 5.44 21.09

3.97 5.44 5.45 7.08

12.07 21.09 7.08 22.31


(5.4)

Since the work of Harvey et al. [29] provided the first applications of the MSV model,

it is noted that the covariance matrices in (5.4) are selected to match the covariances

estimated in their publication. Taking x0 = 000, the MSV model (5.1) with the known

parameters is used to generate the 1800 observations yt with their corresponding

log-volatilities xt. The resulting simulated time series of volatilities for each financial

variable, i = 1, 2, 3, 4, is presented in Figure 5.1 for the first 900 observations as

the training set and in Figure 5.2 for the remaining 900 observations as the test

set (validation set). Note that these represent the ”true” volatilities conditioned on

the true log-volatilities xTt simulated from the model with the x−axis in the figures

representing the time period and the y−axis representing the volatility level measured

in percentages.

Taking the simulated observations {yt}900
t=1 generated from the simulated log-

volatilities series {xt}900
t=0 in Figure 5.1, we proceed to use the q-MLE method to

estimate the linearized MSV model (5.5) with unknown parameters

ỹt = (−1.27)1p + xt + ε̃εεt, ε̃εεt ∼ N(000,R)

xt+1 = xt + ηηηt, ηηηt ∼ N(000,Q)

x0 ∼ Np(000,P0) (5.5)

where the vector ỹt = [ỹ
(1)
t , ..., ỹ

(4)
t ]′ with ỹ

(i)
t = log

(
y

(i)
t

)2

, for i = 1, 2, 3, 4. It is
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Figure 5.1: Simulated conditional ith−volatility measured as exp{xit/2}. These time series
of volatilities serve as a placeholder for the ”true” volatility observed during the training
set.

important to note that the optimization scheme in the q-MLE algorithm is notorious

for diverging from the optimal solution if the initial parameter estimates θθθ0 is far

from the optimal solution. Therefore, a new initial parameter estimation process for

the MSV model is implemented to overcome this limitation. Taking M = I4×4, the

unknown parameters in the linearized MSV model (5.5) are the unknown coefficients

in the matrices R and Q constrained to preserve the covariance structure. From

equation (5.5), the expected value of the observation equation can be written as

E{xt} = ỹt − (−1.27)1p = ẑt (5.6)

Thus, in order to provide initial parameter estimates θθθ0 for the covariance matrices,

71



www.manaraa.com

0 100 200 300 400 500 600 700 800 900
0

10

20
Simulated Volatility Test Set

0 100 200 300 400 500 600 700 800 900
0

5

10
Simulated Volatility Test Set

0 100 200 300 400 500 600 700 800 900
0

5

10
Simulated Volatility Test Set

0 100 200 300 400 500 600 700 800 900
0

10

20
Simulated Volatility Test Set

Figure 5.2: Simulated conditional ith−volatility measured as exp{xit/2}. These time series
of volatilities serve as a placeholder for the ”true” volatility observed during the test set.

we estimate the following vector AR(1) model using ordinary least squares (OLS)

ẑt = M0ẑt−1 + ηηηt, ηηηt ∼ N(000,Q0) (5.7)

This method will provide estimates for the unknown matrix M0 and the covariance

matrix Q0. Notice that if the MSV model had µµµ 6= 0 and M 6= I4×4, then this method

may also provide an initial parameter estimate for M and µµµ that can then be used

for the q-MLE method for full estimation of the State-Space model. Proceeding to

estimate the model (5.7) with the simulated time series observations yt and unknown
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diagonal matrix M0, the initial parameter estimates are

M0 =



0.9720 0 0 0

0 0.9924 0 0

0 0 0.9937 0

0 0 0 0.9939


(5.8)

Q0 =



0.0214 0.0082 0.0046 0.0068

0.0082 0.0206 0.0083 0.0115

0.0046 0.0083 0.0243 0.0074

0.0068 0.0115 0.0074 0.0244


(5.9)

It is also worth noting that in order to preserve stability in the estimates, equation

(5.7) is fitted with the 30-day moving average of ẑt in lieu of ẑt itself. A consistent

initial estimator for the matrix R is given by the correlation matrix of the 30-day

moving average of ẑt

R0 =



1.0000 0.3747 0.0808 0.3092

0.3747 1.0000 0.6881 0.9587

0.0808 0.6881 1.0000 0.8009

0.3092 0.9587 0.8009 1.0000


(5.10)

Now that the initial covariance parameters have all been estimated, we make the

following adjustment to the model (5.5) before proceeding with the q-MLE procedure.

The model used for the q-MLE procedure that incorporates the adjustment is

ỹt = (−1.27)1p + xt + R1/2ε̃εεt, ε̃εεt ∼ N(000, I)

xt+1 = xt + Q1/2ηηηt, ηηηt ∼ N(000, I) (5.11)
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where the covariance matrices are related by R = R1/2RT/2 and Q = Q1/2QT/2.

Since the decomposition of the matrices are not unique, the matrices R1/2 and Q1/2

are selected as the Cholesky decomposition of the covariance matrices. This means

that the unknown parameters of the model (5.11) are the coefficients in the lower

triangular matrices R1/2 and Q1/2 with their initial estimates taken as

(Q1/2)0 =



0.1461 0 0 0

0.0565 0.1319 0 0

0.0313 0.0493 0.1445 0

0.0466 0.0671 0.0181 0.1320


(5.12)

(R1/2)0 =



1.0000 0 0 0

0.3747 0.9272 0 0

0.0808 0.7095 0.7000 0

0.3092 0.9091 0.1870 0.2073


(5.13)

where the Cholesky decomposition of (5.9) and (5.10) was used. Therefore, the initial

parameter estimate θθθ0 that is used for the q-MLE procedure is taken as the vector

stacked with the elements in the matrix (R1/2)0 and (Q1/2)0 as shown in Table 5.1.

Recall that the MSV model considered for q-MLE estimation assumes M = I4×4, so

the matrix M0 is not included when stacking the vector θθθ0.
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Description θθθ0

Elements 0.1461
of 0.0565
(R1/2)0 in θθθ0 0.0313

0.0466
0.1319
0.0493
0.0671
0.1445
0.0181
0.1320

Elements 1.0000
of 0.3747
(Q1/2)0 in θθθ0 0.0808

0.3092
0.9272
0.7095
0.9091
0.7000
0.1870
0.2073

Table 5.1: Initial parameter estimate θθθ0.

Given the initial parameter estimate θθθ0, the q-MLE procedure is employed and

the estimated results are given in Table 5.2 where the t-statistics and statistical sig-

nificance based on the p-Values of the estimated parameters are also presented. From

Table 5.2, it is observed that most parameters are statistically significant given their

small p-Values with the exception of θ3 and θ10 where their p-Values suggests that

there is minimal statistical evidence that these two parameters should not be zero.

Overall, the parameter estimate’s t-statistics and p-values are within expectations.
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Parameter Estimate Std Errr t-Stat Prob

θ1 0.06873 0.01719 3.99822
0.00006

θ2 0.10746 0.03667 2.93033
0.00339

θ3 0.00429 0.02845 0.15073
0.88019

θ4 0.09973 0.03896 2.56016
0.01046

θ5 0.09483 0.02775 3.41787
0.00063

θ6 0.04013 0.02859 1.40357
0.16045

θ7 0.10269 0.02872 3.57515
0.00035

θ8 0.07139 0.02019 3.53645
0.00041

θ9 0.02455 0.01204 2.04005
0.04135

θ10 0.00000 50.57849 0.00000
1.00000

θ11 2.21535 0.04360 50.80757
0

θ12 0.83326 0.07381 11.28991
0

θ13 0.48292 0.07843 6.15721
0

θ14 0.69605 0.08741 7.96341
0

θ15 1.97658 0.04203 47.02932
0

θ16 0.72530 0.08539 8.49399
0

θ17 0.96241 0.08126 11.84411
0

θ18 2.17536 0.02950 73.75218
0

θ19 0.29103 0.06494 4.48137
0.00001

θ20 1.98057 0.02657 74.53379 0

Table 5.2: Parameter Estimates for the MSV model (5.5) via q-MLE procedure
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From Table 5.2, the q-MLE estimate of the state error covariance matrix Q is

given by

Q̂ = Q̂1/2Q̂T/2 =



0.0047 0.0074 0.0003 0.0069

0.0074 0.0205 0.0043 0.0205

0.0003 0.0043 0.0067 0.0063

0.0069 0.0205 0.0063 0.0211


(5.14)

Where Q̂1/2 is the estimated lower Cholesky-like covariance matrix from the q-MLE

procedure and it is given by

Q̂1/2 =



0.0687 0 0 0

0.1075 0.0948 0 0

0.0043 0.0401 0.0714 0

0.0997 0.1027 0.0246 0.0000


(5.15)

Similarly, the estimate of the observation error covariance matrix R is given by

R̂ = R̂1/2R̂T/2 =

(
π2

2

)−1



0.9945 0.3741 0.2168 0.3125

0.3741 0.9324 0.3721 0.5030

0.2168 0.3721 1.1128 0.3379

0.3125 0.5030 0.3379 1.0979


(5.16)

Where R̂1/2 is the estimated lower Cholesky-like covariance matrix from the q-MLE

procedure and it is given by

R̂1/2 =



2.2154 0 0 0

0.8333 1.9766 0 0

0.4829 0.7253 2.1754 0

0.6960 0.9624 0.2910 1.9806


(5.17)

77



www.manaraa.com

It is noticed from the estimate R̂ that no restrictions on a correlation structure were

imposed; that is, it is assumed only that the matrices have covariance structures but

that R is not constraint to have diagonals as π2/2. This assumption is shown to be

appropriate as the estimated diagonal entries of R̂ are close to 1.

Now that the MSV model (5.5) has been fully estimated; that is, all matrices are

known, the estimates of the log-volatility time series {xt} can be obtained for each

day in the training window via the Kalman filter. Figure 5.3 plots the conditional

volatility time series derived from the Kalman filter estimates {xt|t} defined as the

diagonals of the matrix V
1/2
t in equation (5.1) and compares them to the ”true”

volatility. Recall that this ”true” volatility is the volatility that was generated from

the model and it is the same as the volatility in Figure 5.1. From Figure 5.3, it is no-

ticed that the linearization of equation (5.5) is an appropriate model approximation

to the MSV model (5.1) as the conditional volatility closely approximates the ”true”

volatility. These results are remarkable on their own since the linearization imposed a

non-Gaussianity assumption in the model where the q-MLE method attempts to ap-

proximate the non-Gaussian distribution with a Normal distribution by appropriately

specifying the model, in particular, R. Thus, the Normal approximation sufficiently

captures the ”true” unobservable volatility.
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Figure 5.3: Estimated conditional ith−volatility measured as exp{xit/2}, where xt is the
Kalman filter estimate.

5.1.1 Performance Diagnostics

Sensitivity analysis can be provided during the entire training set and test set for the

estimated MSV model in terms of the short-range forecast error measure

e(xt|t) =
(
xt+1|t − xvt+1

)T (
xt+1|t − xvt+1

)
(5.18)

where xt+1|t is the one-step ahead forecast produced from the Kalman filter estimate

xt|t and xvt+1 is the verifying analysis at forecast date t + 1. As mentioned before,
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the verifying analysis is subjective and it provides the analyst with the freedom to

input their own view of forecasted volatilities. For this numerical experiment, the

verifying analysis is selected as the fixed interval smoothed log-volatilities obtained

from the observations at the verification time (see Kalman smoother in Section 2.4).

Using the forecast sensitivity equations derived for the MSV model in Section 4.6.1,

impacts to the volatility forecast can be derived in terms of the estimated parameters

and inputs.
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Figure 5.4: Standard Forecast Error Measure
√
e as in equation (5.18)
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Figure 5.5: Forecast Error Sensitivity to Observations
∂e

∂ỹt
for each time series (TS)
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Figure 5.6: Forecast Error Sensitivity to background
∂e

∂xt|t−1
for each time series (TS).

Recall that the background vector is defined as the previous one-step ahead forecast.
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Figure 5.7: Forecast Error Sensitivity to Background Covariance Matrix for each time series

(TS) taken as the diagonal entries of
∂e

∂B
. Recall that the background covariance matrix is

defined as the previous one-step ahead forecast.
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Figure 5.8: Histogram of the diagonal entries of
∂e
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for each time series (TS).
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Figure 5.10: Histogram of the diagonal entries of
∂e

∂R
for each time series (TS).
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Figure 5.11: Forecast Error Sensitivity to Error Covariance Matrix inflation parameters
∂e

∂so
and

∂e

∂sb
taken as their 30-day moving average.
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Figure 5.4 presents the one-step ahead log-volatility forecast error score
√
e(xt|t)

for the past 800 periods. Figure 5.5 presents the one-step ahead log-volatility fore-

cast error sensitivity to the observations during each time iteration in the training

set for the past 800 periods. This plot can be interpreted as a diagnostic tool to

determine which financial variable is degrading the forecasted volatilities. Figure 5.6

and Figure 5.7 present the one-step ahead log-volatility forecast error sensitivity to

the background estimate and to the background error covariance matrix, respectively.

During each time iteration of the Kalman filter, these background estimates represent

the previous one-step ahead log-volatility forecast and the previous one-step ahead

forecast of the covariance matrix of the log-volatility estimates. For the Kalman filter,

these background estimates during each time iteration will be dependent on the initial

priors x0 ∼ N(000,P0). Figure 5.9 represents the one-step ahead log-volatility forecast

error sensitivity to the observation error covariance matrix. Figure 5.11 presents the

one-step ahead log-volatility forecast error sensitivity to the matrix scaling factor s0

for the observation error covariance and sb to the state background error covariance

matrix.

Each of the forecast sensitivities provide model performance diagnostics during

each time iteration. It is observed from Figure 5.5 to Figure 5.11 that the largest im-

pact on the one-step ahead log-volatility forecast is due to the background estimates.

The initial background estimates, or the initial priors in statistical theory, are one of

the main focuses on the study of Bayesian estimation as these background estimates

can have large impacts on results. This is clearly seen in our simulated case as the

sensitivities to xb and B are capable of capturing the degradation in the forecasts by

showing positive sensitivities. This is particularly true for the sensitivity to the back-

ground matrix B as the forecast degrades almost to 5 points during many cycles of

the training set. The initial background covariance matrix was selected to have large
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quantities on the diagonals (1e10) so as to create a diffusion estimation problem. This

selection is common in the econometric literature when little information is known

about the priors, however, it may degrade model performance in the long run.

5.1.2 Adaptive Tuning of the Observation Error Covariance Matrix

The assumption with the q-MLE estimator is that the non-Gaussian distribution can

be approximated by a Normal distribution with precision as good as the covariance

matrix R. Although the sensitivity diagnostics in Figure 5.9 seem to suggest that the

q-MLE estimated covariance matrix R does not materially degrade forecasted log-

volatilities, adaptive tuning of the matrix R is implemented to increase the accuracy

of the forecasts such that the Normal approximation is more accurate.

Taking the search direction p = − ∂e

∂R1/2
, an adaptive tuning step may be added

during each assimilation iteration of the Kalman filter with

R
1/2
NEW = R1/2 + αp (5.19)

where R1/2 is the lower Cholesky covariance decomposition of the matrix R. If the

log-volatility forecast error e(xt|t) is decreased under this new covariance matrix, the

adaptive tuning step is accepted and a new analysis xt|t is produced with a new

forecast xt+1|t. The reason behind selecting the decomposition R1/2 as the lower

Cholesky covariance is due to the fact that the q-MLE procedure was implemented

using a Cholesky-like covariance decomposition. Thus, to be consistent with the

q-MLE estimator, the adaptive procedure is implemented with R1/2 in lieu of R.

Proceeding to include the adaptive step during each iteration of the Kalman filter

using equation (5.19) and with the aid of Algorithm 4.1, updated volatility estimates

are produced. Figure 5.12 presents the results of the Kalman filter volatility estimates
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during the training set with the adaptive R1/2 procedure and compares these results

to the ”true” volatility. Since in this numerical experiment the ”true” volatilities are

available, Figure 5.13 presents the volatility error measured as the difference between

the ”true” volatility and Kalman filter with adaptive R1/2 volatility estimates. The

Kalman filter with no adaptive tuning volatility errors are also presented in Figure

5.13 for comparison and Table 5.3 presents error statistics of each estimation error.

Figure 5.14 presents the dynamic step-size implemented during each iteration of the

Kalman filter with adaptive R1/2 model and it indicates the step-size taken during

each iteration. It is noted that the adaptive procedure accepted 898 adaptive steps

out of 900.
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Figure 5.12: Kalman filter volatility estimation with adaptive R1/2 model during the train-
ing set.
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Figure 5.13: Volatility estimation error during training set measured as the difference be-
tween true volatility and estimated volatility. Kalman filter estimation error represents the
difference between the true volatility and the Kalman filter volatility estimates. Updated
R1/2 estimation error represents the difference between the true volatility and the R1/2

adaptive tuning step with Kalman filter volatility estimation.
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Figure 5.14: Step-size α during each iteration of the Kalman filter in the training set.
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MAE KF
MAE
KF with
Adaptivity

RSME KF
RSM
KF with
Adaptivity

TS1 0.20974 0.19117 0.26296 0.23758
TS2 0.17607 0.14747 0.27912 0.22837
TS3 0.20537 0.18218 0.2715 0.23454
TS4 0.21675 0.17613 0.35606 0.285

Table 5.3: Error statistics based on the volatility error during the training set.

The adaptive procedure for tuning the observation error covariance matrix R1/2

produces improved conditional volatility estimates over the plain Kalman filter (no

adaptivity), as demonstrated by the improved volatility estimation errors in Figure

5.13 and the reduced error statistics of Table 5.3. For example, it is noticed from

Figure 5.13 for the 4th financial variable that the volatility estimate around the 280-

300 time period is significantly improved from a volatility error of about 2% to a

volatility error of about 1.5 %. Furthermore, it is worth mentioning that the adaptive

procedure in Algorithm 4.1 is designed to only improve the volatility estimates; that

is, including adaptive tuning of the covariance matrix R1/2 is no worse than the

original Kalman filter volatility estimates, as seen in Figure 5.13.

It is a well known fact from econometric theory that models degrade over time due

to the fact that model parameters are estimated during a training set and forecasts

are employed during a test set. It is expected that using models over a long period

of time, outside of the training set, will degrade in performance since the estimated

parameters may become stale or irrelevant to new incoming data. A common solution

is to re-develop the model to more relevant data. On the other hand, adaptivity

of model parameters may be implemented during the test set to provide improved

estimates without necessitating to re-estimate the model again.

90



www.manaraa.com

Figure 5.15 presents the conditional volatility estimates during the test set using

the Kalman filter with adaptive R1/2 matrix and compares them to the true volatility

time series. Figure 5.16 presents the volatility estimation error during the test set

measured as the difference between the true volatility and the Kalman filter with

adaptive R1/2 procedure. The plot also shows the volatility estimation error between

the true volatility and the plain Kalman filter (no adaptivity) for comparison, while

Table 5.4 presents error statistics under each methodology. Figure 5.17 presents the

dynamic plot of the step-size α during each iteration in the test set of the Kalman

filter.
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Figure 5.15: Kalman filter volatility estimation with adaptive R1/2 model during the test
set.
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Figure 5.16: Volatility estimation error during test set measured as the difference between
true volatility and estimated volatility. Kalman filter estimation error represents the differ-
ence between the true volatility and the Kalman filter volatility estimates. Updated R1/2

estimation error represents the difference between the true volatility and the R1/2 adaptive
tuning step with Kalman filter volatility estimation.
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Figure 5.17: Step-size α during each iteration of the Kalman filter in the test set.

MAE KF
MAE
KF with
Adaptivity

RSME KF
RSM
KF with
Adaptivity

TS1 0.48643 0.42818 1.0584 0.88234
TS2 0.21087 0.1916 0.46672 0.38638
TS3 0.27423 0.24373 0.40103 0.34848
TS4 0.33179 0.30456 0.83181 0.69963

Table 5.4: Error statistics based on the volatility error during the test set.

From Figure 5.16 it is observed that, overall, the adaptive R1/2 procedure con-

tinues to provide improved volatility estimates during the test set. Although there

are a few instances were the updated volatility provides slightly worse results than

the plain Kalman filter, this concern is mitigated from the fact the adaptivity pro-

vides improved results over all, specially seen after the 800 time period were volatility

jumped up. Table 5.4 also demonstrates that the adaptivity procedure is capable
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of reducing volatility error statistics. It is also worth mentioning that, although the

updated volatility provided slightly worse results during a few cycles, it is due to

the fact that the update is performed in terms of the proxy volatility xvt (a run of

the Kalman smoother during the test set without adaptivity). Thus, it is the case

that the forecast error ε was reduced in terms of this proxy, which depends on the

linearized observations ỹt (already an approximation introducing errors), suggesting

that careful considerations of the proxy should be implemented. In practice, the

”true” volatility cannot be observed, however, the proxy implemented in this dis-

sertation provides sufficient evidence that it is an appropriate selection. Since the

”true” volatilities are available in this experiment, adaptivity of the background esti-

mates are performed in the following section in terms of the true volatility as proxy

to demonstrate the predictive power of the adaptive procedure when the ”correct”

volatilities are implemented.

5.1.3 Adaptive Tuning of Background Error Covariance Matrix

To demonstrate the importance of the proxy selection and the predictive power of

including an adaptive procedure within each iteration of the Kalman filter, adaptivity

will be performed in terms of true volatility as the proxy. That is, using the volatility

time series generated for the problem, the volatility forecast score function is defined

as

e(xt|t) =
(
xt+1|t − xTt+1

)T (
xt+1|t − xTt+1

)T
(5.20)

where xt+1|t is the Kalman filter one-step ahead forecast log-volatility from the analy-

sis at time t and xTt+1 is the true log-volatility at time t+1. Using Algorithm 4.1 with

the search direction p taken as 0.5(p̂ + p̂T ), where p̂ = − ∂e

∂B
, an adaptive tuning
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step is added during each assimilation iteration of the Kalman filter with

BNEW = B + αp (5.21)

where B is the background error covariance matrix obtained during each iteration of

the Kalman filter. Notice that the search direction was selected to assure that Posi-

tive Definiteness is preserved during each iteration. If the log-volatility forecast score

e(xt|t) is reduced under this new background covariance matrix B, the adaptive step is

accepted and updated log-volatility and forecasted log-volatilities are produced. Fig-

ure 5.18 presents the results of the Kalman filter with adaptive tuning of B volatility

estimates measured as the diagonals of V
1/2
t and compares them to the true volatility

time series. The results shown in Figure 5.18 are remarkable and demonstrate that

adding the adaptive tuning step with the correct volatility proxy (in this case the true

volatility) approximates the true volatility with high fidelity. Figure 5.19 presents the

volatility estimation error measured as the difference between the true volatility and

the estimated volatility. The Kalman filter estimation error represents the difference

between the true volatility and the Kalman filter volatility estimates while the KF +

Adaptive B estimation error represents the difference between the true volatility and

the adaptive B tuning step with Kalman filter volatility estimation.
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Figure 5.18: Kalman filter volatility estimation with adaptive B model during the training
set.
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Figure 5.19: Volatility estimation error during training set measured as the difference be-
tween true volatility and estimated volatility. Kalman filter estimation error represents
the difference between the true volatility and the Kalman filter volatility estimates. KF +
Adaptive B estimation error represents the difference between the true volatility and the
adaptive B tuning step with Kalman filter volatility estimation.
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As shown in Figure 5.19, the volatility estimation error quickly goes towards

zero within the first iteration of the Kalman filter with adaptivity. These improved

volatility estimates provide evidence of the proof-of-concept behind the adaptivity

procedure. Furthermore, as shown during the diagnostic analysis of Figure 5.6 and

Figure 5.7, the priors xb and B within each iteration of the Kalman filter materially

impacted the log-volatility forecasts. Thus, providing the derivative information of the

background error covariance matrix B within each iteration to update the analysis

(and priors) provides the most impact to the estimates and it is in line with the

diagnostic expectations.

The Kalman filter with adaptive tuning of B is also implemented during the test

set to demonstrate the robustness of the adaptive procedure. Figure 5.20 provides

the Kalman filter volatility estimation with adaptive B model during the test set and

Figure 5.21 provides the volatility estimation error during the test set measured as

the difference between the true volatility and the estimated volatility. These analyses

further demonstrates the importance of selecting the correct proxy and the predic-

tive power of adding an adaptive procedure to the input that material impacts the

forecasted log-volatilities.
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Figure 5.20: Kalman filter volatility estimation with adaptive B model during the test set.
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Figure 5.21: Volatility estimation error during test set measured as the difference between
true volatility and estimated volatility. Kalman filter estimation error represents the differ-
ence between the true volatility and the Kalman filter volatility estimates. KF + Adaptive
B estimation error represents the difference between the true volatility and the adaptive B
tuning step with Kalman filter volatility estimation.
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5.2 Foreign Exchange MSV Estimation

For the second set of numerical experiments, historical data on seven Foreign Ex-

change (FX) rates are used for analysis. The FX rate time series consists of ob-

servations obtained directly from and published by the Federal Reserve Bank of St.

Louis Research Economic Data (https://www.stlouisfed.org). The FX rates selected

for modeling include the Australian dollar (AUD), Canadian dollar (CAD), Chinese

Yuan (CNY), European Euro (EUR), British Pound Sterling (GBP), Japanese Yen

(JPY) and the Mexican Peso (MXN) all paired to the U.S. dollar. Historical observa-

tions of weekdays data from these time series are obtained for the period 10/20/2014

to 10/18/2019, for a total of 1,305 observations. The dataset is split into a training

set and a test set where the training set contains observations from 10/20/2014 up to

01/01/2018, while the test set contains observations from 01/01/2018 to 10/18/2019.

5.2.1 Data Pre-Processing

It is observed from the dataset that certain dates have missing values. In order

to overcome this data limitation, a univariate Kalman filter is used to predict the

missing time series observation given all available data up to that date. In particular,

the Kalman filter implemented for the data imputation is given by the procedure

in Algorithm 5.1. It is further noted that the Algorithm 5.1 is only applicable for

univariate time series in that it is necessary that there exist a time dependency in the

data.

Figure 5.22 presents each FX time series data after applying the Kalman filter

imputation procedure of Algorithm 5.1 to 56 missing observations. Note that by con-

struction of the algorithm, the observations remain unchanged and only the missing

entries are imputed.
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Algorithm 5.1: Missing Observation Imputation

Input: Univariate Time Series Observations {yt}Nt=1 with missing values and initial esti-

mates ŷ0 and P0.

Output: Univariate Time Series Observations {yt}Nt=1 with missing values predicted.

1: procedure Missing Value Imputation({yt}Nt=1)

2: for t = 1,2,...N do

3: if yt = NaN then . observation value is missing

4: vt = 0 and Kt = 0

5: ŷt = ŷt−1 +Ktvt

6: Pt = Pt−1(1−Kt) + 1

7: yt = ŷt . Impute missing observation as KF analysis

8: else . No need for imputation

9: vt = yt − ŷt

10: Kt = P−1
t (Pt + 1)

11: ŷt = ŷt−1 +Ktvt . Continue with the KF

12: Pt = Pt−1(1−Kt) + 1

13: yt = yt . Observation remains the same

14: end if

15: end for

16: end procedure
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Figure 5.22: Foreign exchange time series data after Kalman filter imputation.

Next, for each FX rate time series, their corresponding returns are calculated as

the log-returns. Recall that the log-returns of a financial time series is defined as the

yield of the financial variable at time t and it is calculated as

Log-Returnt = log FXt − log FXt−1 (5.22)
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Each of the FX rate returns are plotted in Figure 5.23 as the absolute value of equation

(5.22). From these returns, the observations yt that will be used for modeling are

defined as

y
(i)
t = Log-Return

(i)
t − E

(
Log-Return

(i)
t

)
(5.23)

where, in this sense, the statistical operator E{∗} is taken as the empirical average of

the log-returns and the index i = AUD, CAD, CNY, EUR, GBP, JPY, MXN. The

reason behind taking the empirical average in equation (5.23) is to ensure that there

are no y
(i)
t ’s identically equal to zero; this could create difficulties when taking the

logarithms of y
(i)
t . Since the MSV model uses the transformation log

(
y

(i)
t

)2

for each

FX time series, it is of importance to be able to detect the presence of a unit-root in

the FX data. Recall that if the FX data possess a unit-root, then the time lag of the

FX series is required for modeling such that the observation equation includes one

more difference in the data. In general, these tests take the form

log
(
y

(i)
t

)2

= φ0 + φ1 log
(
y

(i)
t−1

)2

+ Noise (5.24)

Common statistical tests to detect the presence of a unit-root (φ = 1) in the data

include the Augmented Dickey-Fuller (ADF) test, the Kwiatkowski-Philips-Schmidt-

Shin (KPSS) test and the Philips-Perron (PP) tests. As a method of pre-processing

the FX data, Table 5.5 presents each of the unit-root test conclusions at the 95%

confidence level along with their p-Values for each FX time series under each statistical

test. Notice from the table that all of the unit-root tests reject the null hypothesis

that the FX rate data contains a unit-root. Therefore, the conclusion is that there is

minimal statistical evidence that the transformed time series log
(
y

(i)
t

)2

requires to

be differenced further.
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FX ADF Test KPSS Test PP Test

AUD 0.0162 0.0100 0.0036

Unit-Root No No No

CAD 0.0161 0.0100 0.0046

Unit-Root No No No

CNY 0.0421 0.0100 0.0142

Unit-Root No No No

EUR 0.0195 0.0100 0.0038

Unit-Root No No No

GBP 0.0127 0.0325 0.0010

Unit-Root No No No

JPY 0.0122 0.1000 0.0018

Unit-Root No Yes No

MXN 0.0132 0.0293 0.0021

Unit-Root No No No

Table 5.5: Unit-Root Test results at the 95% confidence level for log
(
y2
t

)
. The test results

”No” indicate the rejection of the null hypothesis that there is a unit-root in the data.

5.2.2 FX MSV Model

Using the transformed FX data yt ∈ R7, the following Multivariate Stochastic Volatil-

ity model is considered for estimation

yt = V
1/2
t εεεt

xt+1 = xt + ηηηt,

x0 ∼ Np(000,P0) (5.25)
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Model (5.25) is selected with M = III for the purpose of allowing the log-volatilities

to follow a random walk; that is, it is expected that the volatility will be stochastic

for some period but, overall, it should remain fairly constant. Linearization of this

model is required for estimation and the resulting linear State-Space model is given

by

ỹt = (−1.27)1p + xt + ε̃εεt, ε̃εεt ∼ N(000,R)

xt+1 = xt + ηηηt, ηηηt ∼ N(000,Q)

x0 ∼ Np(000,P0) (5.26)

where ỹ
(i)
t = log

(
y

(i)
t

)2

and the index i = AUD, CAD, CNY, EUR, GBP, JPY, MXN

denoting each FX time series. In order to produce Maximum Likelihood estimates of

the unknown covariance parameters {R,Q}, initial covariance parameter estimates

are produced in a similar fashion as described in the Section 5.1. The resulting initial

covariance parameters R0 and Q0 are presented below where an initial estimate of M

is also given; however, ruling in favor of the identity matrix as described by equation

(5.26). It is also worth mentioning that in the model, µµµ was set to zero; that is, the

model does not assume a long-term mean of log-volatilities. This assumption appears

to be appropriate since the initial estimate of M is approximately an identity matrix

and if µµµ 6= 000, then µµµ+ M(xt − µµµ) implies that µµµ = 000.
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M0 =



0.9997 0 0 0 0 0 0

0 0.9998 0 0 0 0 0

0 0 0.9998 0 0 0 0

0 0 0 0.9998 0 0 0

0 0 0 0 0.9997 0 0

0 0 0 0 0 0.9999 0

0 0 0 0 0 0 0.9996



(5.27)

Q0 =



0.0224 0.0070 0.0014 0.0031 0.0026 0.0033 0.0051

0.0070 0.0223 0.0027 0.0023 0.0036 0.0034 0.0059

0.0014 0.0027 0.0296 0.0036 0.0007 0.0031 0.0016

0.0031 0.0023 0.0036 0.0228 0.0046 0.0053 0.0026

0.0026 0.0036 0.0007 0.0046 0.0260 0.0030 0.0028

0.0033 0.0034 0.0031 0.0053 0.0030 0.0280 0.0032

0.0051 0.0059 0.0016 0.0026 0.0028 0.0032 0.0251



(5.28)

R0 =



1.0000 0.5112 −0.3481 0.5156 0.4731 0.0104 0.3796

0.5112 1.0000 −0.1091 0.1762 0.5466 0.2252 0.5624

−0.3481 −0.1091 1.0000 −0.3693 0.2113 0.0444 0.1682

0.5156 0.1762 −0.3693 1.0000 0.0903 −0.1427 −0.0251

0.4731 0.5466 0.2113 0.0903 1.0000 0.1167 0.5311

0.0104 0.2252 0.0444 −0.1427 0.1167 1.0000 0.2060

0.3796 0.5624 0.1682 −0.0251 0.5311 0.2060 1.0000



(5.29)
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Then, the Cholesky decomposition of the initial covariance parameters R0 and

Q0 are produced and their elements are all stacked into a single vector θθθ0 ∈ R56,

as described in Section 5.1. This initial parameter vector θθθ0 is then fed into the q-

MLE procedure of Algorithm 3.1 to produce Maximum Likelihood Estimates (MLE)

θ̂θθ from which MLEs R̂ and Q̂ of the observation and state error covariance matrices

are further obtained. Recall that the q-MLE procedure is possible only if the linear

State-Space model (5.26) assumes a Gaussian distribution of the observation and

state innovations.

The optimization results from the q-MLE procedure are provided below, where

the standard error and p-Value of each estimate is omitted. However, we briefly

summarize that most parameter estimates are statistically significant (p-Values < 0.1)

with the exception of a few parameter estimates that are not statistically significant;

that is, for these parameters, there is minimal statistical evidence that they should

not be zero. Not having statistical significance of parameter estimates is of minimal

concern within this context (as opposed to a regression problem) since these estimates

represent the covariance explained between FX rates and not the predictive power

explained between FX rates.

Q̂ =



0.0040 0.0018 0.0050 0.0033 0.0051 −0.0022 0.0040

0.0018 0.0025 −0.0023 −0.0006 0.0024 0.0008 0.0015

0.0050 −0.0023 0.0894 0.0141 0.0252 −0.0152 0.0213

0.0033 −0.0006 0.0141 0.0060 0.0051 −0.0045 0.0043

0.0051 0.0024 0.0252 0.0051 0.0118 −0.0046 0.0095

−0.0022 0.0008 −0.0152 −0.0045 −0.0046 0.0044 −0.0036

0.0040 0.0015 0.0213 0.0043 0.0095 −0.0036 0.0079


(5.30)
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R̂ =

(
π2

2

)



1.0464 0.3216 0.0569 0.1431 0.1054 0.1669 0.2162

0.3216 1.0329 0.1292 0.1099 0.1645 0.1622 0.2736

0.0569 0.1292 1.2425 0.1494 0.0065 0.1623 0.0461

0.1431 0.1099 0.1494 1.0586 0.2010 0.2560 0.1100

0.1054 0.1645 0.0065 0.2010 1.2095 0.1465 0.1123

0.1669 0.1622 0.1623 0.2560 0.1465 1.2929 0.1500

0.2162 0.2736 0.0461 0.1100 0.1123 0.1500 1.1760



(5.31)

Now that the State-Space model (5.26) has been fully estimated (all parameters are

known), the Kalman filter is employed to produce log-volatility estimates of each

FX time series for each time period. Figure 5.23 presents the conditional volatility

estimates, measured as the diagonals entries of V
1/2
t , of each FX time series obtained

from the Kalman filter estimates. These conditional volatilities are plotted along

with the absolute value of the returns (log-returns) of each FX time series to provide

insight on the full behavior of the FX series. For example, the GBP FX time series

produces consistent returns over time; that is, for most periods, the returns have been

relatively stable with minimal sudden jumps above the historicals. This observation

is also in line with GBP conditional volatility estimates as the volatility produced

by the Kalman filter shows relatively dormant volatility periods over time. On the

other hand, the CNY FX time series shows periods in time where the returns have

had sudden increases and decreases. This is also consistent with the conditional

volatility estimates produced by the Kalman filter as the volatility series produces

frequent increases and decreases in volatility estimates. Furthermore, it is noted

that this observation is consistent with financial theory as it is well known that

the returns on assets are mostly driven by sudden changes in volatilities; that is,
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investors require higher returns on their investments as risks increases. Thus, the

Multivariate Stochastic Volatility model makes it an attractive modeling choice for

modeling multivariate conditional volatilities.

Although the volatility estimates are producing outputs with intuition consistent

with financial theory, it is noted that the academic literature provides limited knowl-

edge of a consistent methodology to diagnose model outputs and model performance

of the Multivariate Stochastic Volatility model. This dissertation, therefore, extends

this limitation by providing new diagnostic tools for model performance and the re-

sults are presented in the next section.
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Figure 5.23: Foreign Exchange rate conditional volatilities. The absolute value of the
log-returns of each FX rate time series is plotted along with their conditional volatilities
obtained from the Kalman filter estimates.
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5.2.3 Sensitivity Diagnostics

The MSV model provided conditional volatility estimates for each FX time series

during each time period in the training set. Sensitivity analysis can be developed to

provide diagnostic tools to assess the MSV’s model performance during the training

set. Once the MSV model (5.26) has been fully estimated, the Kalman filter may

be implemented to provide the log-volatility state sequence {xt|t} during each time

period of the training set. It was shown that these log-volatilities estimates are now

dependent on the input parameters from the model; that is, for each time period t,

xt|t = xt|t
(
ỹt,xt|t−1,Pt|t−1,R,Q

)
(5.32)

where xt|t−1 and Pt|t−1 are the background estimates at time t; i.e., the current

Kalman filter forecast, R and Q are the observation and state error covariance matrix,

respectively. The forecast score function is then defined as

e(xt|t) =
(
xt+1|t − xvt+1

)T (
xt+1|t − xvt+1

)T
(5.33)

where xt+1|t is the one-step ahead Kalman filter prediction of log-volatilities and xvt+1

is the verifying analysis at time t+1 and serves as a proxy for the ”true” log-volatilities.

Since sensitivity analysis will be provided during each time iteration of the training

set, this section of the dissertation implements the Kalman filter at time t+ 1, from

observations ỹt+1, as the log-volatility proxy to the ”true” states. Using the results

derived in Table 4.2, the sensitivity analysis to input parameters are obtained.

Figure 5.24 presents the forecast score function
√
e during each time iteration

in the training set and represents the all at once short-range log-volatility forecast

error impact. Figure 5.25 presents the error forecast sensitivity to observations ỹt
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during each time iteration of the training set and represents the log-volatility fore-

cast impact to daily changes of FX rates. Figure 5.26 and Figure 5.27 presents the

log-volatility forecast error sensitivity to background error estimates and background

error covariance estimates during each time iteration of the training set and repre-

sents the log-volatility forecast error impact to prior log-volatility estimates of each

FX rate. Figure 5.29 presents the log-volatility forecast error sensitivity to the trans-

formed observation error covariance matrix and represents the log-volatility forecast

error impact to the accuracy of the linearized observation model. The plot of the dis-

tribution of the background and observation error covariance estimates is also present

in Figure 5.28 and in Figure 5.30, respectively, to help identify the symmetry of the

distribution of forecast degradations (positive values).
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Figure 5.24: Forecast score function
√
e during each time iteration in the training set

represented as the all at once short-range log-volatility forecast error impact.
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Figure 5.25: Log-volatility forecast error sensitivity to daily FX observations. These repre-
sent the log-volatility forecast error impact to daily changes of FX rates.
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Figure 5.26: Log-volatility forecast error sensitivity to background estimates. These rep-
resent the log-volatility forecast error impact to prior log-volatility estimates of each FX
rate.
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Figure 5.27: Log-volatility forecast error sensitivity to background covariance estimates.
These represent the log-volatility forecast error impact to prior log-volatility covariance
estimates taken as the diagonal entries of the covariance matrix.
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Figure 5.28: Distribution of the log-volatility forecast error sensitivity to background co-
variance estimates.
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Figure 5.29: Log-volatility error sensitivity to the transformed observation error covariance
matrix. These represent the log-volatility forecast error impact to the accuracy of the
linearized observation model.
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Figure 5.30: Distribution of the log-volatility error sensitivity to the transformed observation
error covariance matrix.

Figures 5.24 - 5.29 provide diagnostic tools for the MSV’s model performance dur-

ing online estimation of the training set. In practice, as new observations yt become

available at time t, a Kalman filter is applied to obtain the volatility estimates of

each FX series, while the diagnostic tools are implemented to assess the log-volatility
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forecast error impact of this volatility estimate at time t due to each input parameter

variations. These log-volatility forecast error sensitivities provides the analyst in-

sight to model deficiency in an online manner, while the derivative information may

provide guidance on parameter tuning for improved volatility estimation. As seen

from Figure 5.26 and Figure 5.27, it is noted that the log-volatility forecast errors

have the largest impact due to the prior estimates. This is to be expected since the

initial priors were selected as x0 ∼ N(000,P0) with P0 being a diagonal matrix whose

entries are large (10e10). The selection of this prior is common in the financial indus-

try when very little information is known about the log-volatilities and selecting the

large variances introduces the process as a diffusion process (see for example Chapter

11 of Tsay [53]). Nevertheless, the sensitivity analysis continues to provide perfor-

mance diagnostics of the MSV model to the selection of these priors with sensitivity

to background estimates results in line with expectations of the methodology.

On the other hand, the forecast sensitivity to the transformed observation error

covariance matrix R of Figure 5.29 provides a diagnosis of each log-volatility estimate

from the assumption that the linearized model with Gaussian distribution accurately

approximates the true MSV model (5.25). Although these sensitivities show minimal

impact to the log-volatility forecasts, their derivative information may be used in an

adaptive procedure to produce updated log-volatilities based on an adaptive procedure

of R. If the q-MLE estimate of R provides reasonable accuracy of the Gaussian

distribution to the true MSV model, then using the update procedure of R will have

the added benefits to improve this approximation by providing updated log-volatility

estimates during each time iteration. This procedure was implemented in Section

5.1 and their added benefit was shown during the exercise to demonstrate proof-of-

concept. Thus, in the next section, this dissertation implements the update procedure

of R1/2 in order to improve volatility estimates.
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5.2.4 Adaptive Tuning

The adaptive procedure of Algorithm 4.1 is implemented to provide improved volatil-

ity estimates of the FX time series based on the derivative information of the forecast

error sensitivities. Taking the search direction p = − ∂e

∂R1/2
, an adaptive tuning step

is added during each assimilation iteration of the Kalman filter with

R
1/2
NEW = R1/2 + αp (5.34)

where R1/2 is the lower Cholesky covariance decomposition of the matrix R. Recall

that in the algorithm, if the log-volatility forecast error e(xt|t) is decreased under this

new covariance matrix, the adaptive tuning step is accepted and a new analysis xt|t

is produce with a new forecast xt+1|t.

Proceeding to include the adaptive step during each time iteration of the Kalman

filter using equation (5.34) and with the aid of Algorithm 4.1, updated volatility esti-

mates are produced. Figure 5.31 presents the conditional volatility estimates of each

FX rate during the training period, measured as the diagonal entries of V
1/2
t , using

the Kalman filter procedure (Original) and using the Kalman filter with adaptive R1/2

procedure (Updated). Figure 5.32 presents the step size α selected during each time

iteration of the update procedure and serves as a guidance to acceptance/rejection of

the adaptive step. It is observed from Figure 5.31 that the conditional volatilities of

the AUD and EUR FX rates are similar under both procedures, however, the CAD,

CNY, GBP, JPY and MXN FX rates conditional volatilities are different under the

two procedure. For most of the FX rates, their conditional volatilities are different

under the adaptive R1/2 procedure, while the plot of the step size α demonstrates

that the adaptive procedure accepted many of these updates (825 steps accepted out

of 834). Since the goal of the adaptive procedure is to reduce the value of the log-
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volatility forecast score function ε, this dissertation accepts the updated procedure as

an improvement to the estimation of FX rate conditional volatility.
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Figure 5.31: Conditional volatility of each FX rate measured as the diagonal entries of V
1/2
t

during the training set. Volatilities using only the Kalman filter are labeled ”Original” and
volatilities using the Kalman filter with adaptive R1/2 are labeled ”Updated”.
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Figure 5.32: Step size α selected during each time iteration in the training set of the adaptive
procedure.

The adaptive procedure of Algorithm 4.1 is also implemented during the out-of-

sample test set to provide improved volatilities estimates. Figure 5.33 presents the

conditional volatility estimates of each FX rate during the test set using the Kalman

filter procedure (Original) and using the Kalman filter with adaptive R1/2 procedure

(Updated). It is observed from Figure 5.33 that the conditional volatility estimates of

each FX rate provide different results under each procedure. On the other hand, Fig-

ure 5.34 shows the step size α selected during each time iteration and it demonstrates

the acceptance of these updates during the time iteration (461 steps accepted out of

469). Since the objective of the adaptive procedure is to provide improved conditional

volatility estimates by minimizing the forecast error, this dissertation accepts these

conditional volatilities under the adaptive R1/2 procedure as an improvement.
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Figure 5.33: Conditional volatility of each FX rate measured as the diagonals of V
1/2
t during

the test set. Volatilities using only the Kalman filter are labeled ”Original” and volatilities
using the Kalman filter with adaptive R1/2 are labeled ”Updated”.

Another added benefit to inclusion of the adaptive procedure is that the MSV

model does not require to be re-estimated during the test set to provide reliable re-

sults. Recall that the main reason for model performance degradation in econometrics
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is due to the fact that model parameters may become stale during the out-of-sample

dataset and re-estimation (re-calibration of model parameters) of the MSV model

may be required. On the other hand, the adaptive procedure overcomes this limi-

tation as the covariance matrix R is being updated during each time iteration and,

consequently, all volatility estimates will be updated.

Jan 2018 Apr 2018 Jul 2018 Oct 2018 Jan 2019 Apr 2019 Jul 2019 Oct 2019 Jan 2020

Time Step

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
S

te
p 

S
iz

e
Plot of Alpha

Figure 5.34: Step size α selected during each time iteration in the test set of the adaptive
procedure.
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Chapter 6

Conclusions and Future Directions

The Multivariate Stochastic Volatility (MSV) model requires an accurate specifica-

tion of the unknown model parameters, in particular, the observation and background

error covariance estimates. This dissertation presented a quasi-Maximum Likelihood

Estimation (q-MLE) technique for estimation of these unknown parameters by first

specifying the linearized MSV model, then calculating initial parameter estimates

through a consistent methodology to ensure convergence of the q-MLE algorithm.

Since these estimated parameters were obtained by fitting the MSV model to a

dataset, the parameters inherently possess approximation errors as the estimation

technique is only an approximation to the true model specification. Data assimila-

tion methods were used in this dissertation as tools for obtaining conditional volatility

estimates based on the fitted MSV model. This dissertation extended the current es-

timation literature on conditional multivariate volatility estimation by showing that

the conditional volatility estimates obtained through a data assimilation method be-

comes dependent on the estimated model parameters. This dependance on model

parameters was further extended to derive new model performance diagnostic tools

in terms of the sensitivity of the log-volatility forecast error to the input parameters.

The sensitivity information extracted from the data assimilation during each cycle

provided an assessment on model performance due to model input variations and

parameter misspecification. The sensitivity information also provided guidance on
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parameter tuning for improved volatility estimation such that a new adaptive tuning

procedure for the MSV was developed in order to demonstrate practical implementa-

tions in finance.

Future research directions stemming from this dissertation include the implemen-

tation of more advanced data assimilation techniques and its applications to the

estimation of conditional volatility of swap rates. Chapter 2 presented many data

assimilation methods that are available for estimation of multivariate conditional

volatilities. In particular, the weak 4D-Var data assimilation methodology is of inter-

est as it provides the flexibility to incorporate state innovation errors in the volatility

estimation through the specification of the state error covariance matrix. As a con-

sequence, future research is needed to understand the impact of the estimated state

error covariance matrix to forecasted volatility estimates. Applications of the sensi-

tivity analysis and adaptive tuning of the weak 4D-Var within the MSV model will

be done to understand the behavior of interest rate swap volatility. The interest rate

swap market is the largest over-the-counter derivatives market, with notional amounts

in the trillions of dollars. This fixed-income market allows large financial institutions

to trade Swaptions and Swaps, with Swaption expirations and Swap tenors rang-

ing from one month to thirty years to accommodate the risk appetite of the investor.

Swaptions and Swaps prices mainly depend on their corresponding forward swap rate,

therefore, it is of interest in our research to model the volatility of the forward swap

rate for the different Swaption expiries and Swap tenors as a multivariate stochastic

process. The sensitivity analysis and adaptive tuning of the weak 4D-Var within the

MSV model will become the main focus of our future research as these methodologies

are capable of modeling the forward swap rates as a multivariate stochastic process,

provide model performance diagnostics and be able to provide improved swap rate

volatility estimates in an online manner.
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Appendix A

Probability Theory

We will present the basic definitions of stochastic processes that will aid in the im-
plementation and representation of Stochastic Differential Equations that are used
throughout this dissertation.

A.1 Stochastic Processes

A Stochastic Process is a family of random variables {xt, t ∈ T} that are indexed
by a parameter set T. Now, the parameter set T can be a discrete set or a continuous
set, depending on the application. If for each t ∈ T , the random variable xt is contin-
uous, we say that the process has a continuous state space. Otherwise, the stochastic
process has a discrete state space if the random variable xt has a discrete outcome.

Stochastic processes are characterized by specifying their joint density function. That
is, all questions regarding the probabilistic properties of a stochastic process can be
answered by specifying

p(xt1 , ..., xtn) (A.1)

for all finite sets {t1, ..., tn} ⊂ T . We say that the stochastic process {xt, t ∈ T}
is a Gaussian process if their joint density function specified in (A.1) is Gaussian
(normal). Since the normal distribution can be characterized by the first two mo-
ments (mean and variance), Gaussian processes can also be fully characterized by their
first two moments. In general, one can specify any stochastic process {xt, t ∈ T} with
any known distribution in order to accommodate the data. For example, Durbin
[23] gives a treatment of State-Space modeling of financial time series by specify-
ing non-Gaussian distributions such as Poisson, Binary, Binomial, Multinomial and
Heavy-Tailed Distributions, to name a few.

Another stochastic process that is useful throughout the dissertation is the Brownian
Motion (also called Wiener) process.

Definition A.1.1. A stochastic process {xt, t ≥ 0} is a Brownian motion if

• {xt, t ≥ 0} has stationary independent increments. That is, the probability
distribution of xt+h − xτ+h, for any h > 0 is the same as xt − xτ (stationary)
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and
xt2 − xt1 , ..., xtn − xtn−1 are independent for any finite set {t1, ..., tn}

• for all t ≥ 0, xt is normally distributed

• for all t ≥ 0, E{xt} = 0

• x0 = 0 with probability 1

Clearly, the increments of Brownian motions have

E{xt − xτ} = 0, ∀t, τ ≥ 0

and, Parzen [46] showed that

var{xt − xτ} = σ2(t− τ),∀t, τ ≥ 0

This goes to show that Brownian motions are completely characterized by their first
two moments.

The final ingredient needed to complete our review in stochastic processes is the no-
tion of Markov processes. Markov processes are very important, useful in practice
and applicabile in many sciences. Broadly speaking, a Markov process is a stochastic
process whose probability about the future state of the process xtn+1 depends only
on the previous information of the process xtn and no other previous information is
needed. Formally, a stochastic process {xt, t ∈ T} is said to have the Markov property
if

p(xtn|xt1 , ..., xtn−1) = p(xtn|xtn−1)

We can make use of the Markov property to have a very useful representation of the
probability law. Indeed, for any finite set {t1, ..., tn} ⊂ T we have

p(xtn , ..., xt1) = p(xtn|xt1 , ..., xtn−1) · p(xtn−1|xt1 , ..., xtn−2) · ... · p(xt2|xt1) · p(xt1)
= p(xtn|xtn−1) · p(xtn−1|xtn−2) · ... · p(xt2|xt1) · p(xt1) (A.2)

Where, in the first equation, we used the multiplication law of probabilities and, in
the second equation, we used the Markov property. Therefore, in order to completely
characterize a Markov stochastic process, one only needs the conditional densities
p(xt|xτ ) for all t > τ , called the transition probabilities. Equation (A.2) is useful
in calculating the probability distribution of a discrete State-Space model as shown
in Chapter 2.
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Appendix B

Option Pricing

B.1 Black-Scholes Model for Pricing

After the major break through of the work of Fischer Black and Myron Scholes, the
use of stochastic differential equations became the backbone in financial mathematics.
Black and Scholes [10] were able to price call and put options via stochastic differential
equations. In their original work, they assumed that the evolution of the price of an
asset St at time t followed a stochastic differential equation

dSt = µStdt+ σStdWt (B.1)

where µ is the instantaneous mean and σ is the instantaneous volatility of the process
St and dWt is a Brownian motion. Notice that the drift (µSt) and diffusion (σSt)
components are allowed to not only change with respect to time, but to also change
as the asset price of St changes. If we let V (St, t) be the price of a call option that
depends on the price of the underlying asset St, we can then use Ito’s lemma [33] to
derive the stochastic differential equation that governs the call option

dV =

(
µS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
+
∂V

∂t

)
dt+ σS

∂V

∂S
dW (B.2)

where we substituted equation (B.1) and have dropped the subscript time index to
ease notation.

One can then put the price of the underlying asset S and the price of the call option
V in a portfolio P whose evolution is given by dP = θ1dV + θ2dS. Since the market
practitioner chooses the weights θ1, θ2, we can choose θ1 = 1 and θ2 = −∂V

∂S
. This

gives the evolution of the portfolio to be

dP =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt

Notice that the choice of such weights gave the cancellation of the stochastic process
St. This means that there are no random disturbances driving the portfolio. That is,
the portfolio is completely predictable and thus ”risk free”. Since there is no risk in P
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and in order to avoid arbitrage, the return of the portolio over a time dt is given by
dPt = rPtdt, where r is the risk-free (constant) interest rate. This equation says that
the riskless portolio should give returns equal to investing the portfolio and recieving
a risk-free rate of return; otherwise, arbitrage opportunities in the portfolio will rise.
We then have the relationship

rPdt =

(
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

)
dt

Cancelling dt and substituting the value of the portfolio P = V − ∂V
∂S
S with the given

weights, we have

r

(
V − S∂V

∂S

)
=
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2

Rearranging the equation we have the much celebrated Black-Scholes partial differ-
ential equation for pricing call and put options

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0, St ≥ 0, 0 ≤ t ≤ T (B.3)

The solution is the price of the call option Vt = V (St, t). In order to solve the partial
differential equation, we need the following boundary condition. At time of maturity
T , the call option will have value VT = max(ST −K, 0), where K is the strike price
of the call. For a put option, the value at maturity is given by VT = max(K −ST , 0).

The Black-Scholes model became the framework for pricing other types of derivative
securities. One can take this framework and assume much more realistic assumptions.
For a further introduction of stochastic differential equations with financial applica-
tions, the book of Neftci [43] presents a comprehensive treatment of the models most
currently used by market practitioners.

136


	Title
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	Introduction
	Overview of Data Assimilation Methods
	General State-Space Model
	Probabilistic Approach
	The Kalman Filter
	The Kalman Smoother
	The Extended Kalman Filter
	4D-Var
	Weak 4D-Var
	Properties of Variational Data Assimilation Methods
	Particle Filters

	Volatility Models in Financial Mathematics
	Introduction
	Multivariate Stochastic Volatility Model
	Estimation of Model Parameters for Non-Leverage Effects

	Sensitivity Analysis
	The Analysis Equation
	Forecast Sensitivity
	Forecast Sensitivities to Observations and Background
	Forecast R -Sensitivity
	Forecast B -Sensitivity
	Summary of Forecast Sensitivities
	Adaptive Tuning of Covariance Parameters

	Numerical Experiments
	Proof-of-Concept
	Foreign Exchange MSV Estimation

	Conclusions and Future Directions
	References
	Probability Theory
	Stochastic Processes

	Option Pricing
	Black-Scholes Model for Pricing


